These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 16920051)
1. The interaction of microstructure and volume fraction in predicting failure in cancellous bone. Nazarian A; Stauber M; Zurakowski D; Snyder BD; Müller R Bone; 2006 Dec; 39(6):1196-202. PubMed ID: 16920051 [TBL] [Abstract][Full Text] [Related]
2. Subregional areal bone mineral density (aBMD) is a better predictor of heterogeneity in trabecular microstructure of vertebrae in young and aged women than subregional trabecular bone score (TBS). Vom Scheidt A; Grisolia Seifert EF; Pokrant C; Püschel K; Amling M; Busse B; Milovanovic P Bone; 2019 May; 122():156-165. PubMed ID: 30776500 [TBL] [Abstract][Full Text] [Related]
3. Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. Perilli E; Baleani M; Ohman C; Fognani R; Baruffaldi F; Viceconti M J Biomech; 2008; 41(2):438-46. PubMed ID: 17949726 [TBL] [Abstract][Full Text] [Related]
4. Limitations of global morphometry in predicting trabecular bone failure. Stauber M; Nazarian A; Müller R J Bone Miner Res; 2014 Jan; 29(1):134-41. PubMed ID: 23761214 [TBL] [Abstract][Full Text] [Related]
5. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Ulrich D; van Rietbergen B; Laib A; Rüegsegger P Bone; 1999 Jul; 25(1):55-60. PubMed ID: 10423022 [TBL] [Abstract][Full Text] [Related]
6. Not only stiffness, but also yield strength of the trabecular structure determined by non-linear µFE is best predicted by bone volume fraction and fabric tensor. Musy SN; Maquer G; Panyasantisuk J; Wandel J; Zysset PK J Mech Behav Biomed Mater; 2017 Jan; 65():808-813. PubMed ID: 27788473 [TBL] [Abstract][Full Text] [Related]
7. Bone volume fraction and structural parameters for estimation of mechanical stiffness and failure load of human cancellous bone samples; in-vitro comparison of ultrasound transit time spectroscopy and X-ray μCT. Alomari AH; Wille ML; Langton CM Bone; 2018 Feb; 107():145-153. PubMed ID: 29198979 [TBL] [Abstract][Full Text] [Related]
8. The role of fabric in the large strain compressive behavior of human trabecular bone. Charlebois M; Pretterklieber M; Zysset PK J Biomech Eng; 2010 Dec; 132(12):121006. PubMed ID: 21142320 [TBL] [Abstract][Full Text] [Related]
9. Bone volume fraction explains the variation in strength and stiffness of cancellous bone affected by metastatic cancer and osteoporosis. Nazarian A; von Stechow D; Zurakowski D; Müller R; Snyder BD Calcif Tissue Int; 2008 Dec; 83(6):368-79. PubMed ID: 18946628 [TBL] [Abstract][Full Text] [Related]
10. Variation of ultrasonic parameters with microstructure and material properties of trabecular bone: a 3D model simulation. Haïat G; Padilla F; Peyrin F; Laugier P J Bone Miner Res; 2007 May; 22(5):665-74. PubMed ID: 17295606 [TBL] [Abstract][Full Text] [Related]
11. Bone volume fraction and fabric anisotropy are better determinants of trabecular bone stiffness than other morphological variables. Maquer G; Musy SN; Wandel J; Gross T; Zysset PK J Bone Miner Res; 2015 Jun; 30(6):1000-8. PubMed ID: 25529534 [TBL] [Abstract][Full Text] [Related]
12. Independent and combined contributions of cancellous and cortical bone deficits to vertebral fracture risk in postmenopausal women. Qiu S; Rao DS; Palnitkar S; Parfitt AM J Bone Miner Res; 2006 Nov; 21(11):1791-6. PubMed ID: 17002584 [TBL] [Abstract][Full Text] [Related]
13. In vivo assessment of architecture and micro-finite element analysis derived indices of mechanical properties of trabecular bone in the radius. Newitt DC; Majumdar S; van Rietbergen B; von Ingersleben G; Harris ST; Genant HK; Chesnut C; Garnero P; MacDonald B Osteoporos Int; 2002 Jan; 13(1):6-17. PubMed ID: 11878456 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional microarchitecture of adolescent cancellous bone. Ding M; Danielsen CC; Hvid I; Overgaard S Bone; 2012 Nov; 51(5):953-60. PubMed ID: 22884723 [TBL] [Abstract][Full Text] [Related]
15. Interrelationship of trabecular mechanical and microstructural properties in sheep trabecular bone. Mittra E; Rubin C; Qin YX J Biomech; 2005 Jun; 38(6):1229-37. PubMed ID: 15863107 [TBL] [Abstract][Full Text] [Related]
16. Functional dependence of cancellous bone shear properties on trabecular microstructure evaluated using time-lapsed micro-computed tomographic imaging and torsion testing. Nazarian A; Meier D; Müller R; Snyder BD J Orthop Res; 2009 Dec; 27(12):1667-74. PubMed ID: 19572408 [TBL] [Abstract][Full Text] [Related]
17. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. Legrand E; Chappard D; Pascaretti C; Duquenne M; Krebs S; Rohmer V; Basle MF; Audran M J Bone Miner Res; 2000 Jan; 15(1):13-9. PubMed ID: 10646109 [TBL] [Abstract][Full Text] [Related]
18. High-resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics. Cendre E; Mitton D; Roux JP; Arlot ME; Duboeuf F; Burt-Pichat B; Rumelhart C; Peix G; Meunier PJ Osteoporos Int; 1999; 10(5):353-60. PubMed ID: 10591832 [TBL] [Abstract][Full Text] [Related]
19. Digital tomosynthesis (DTS) for quantitative assessment of trabecular microstructure in human vertebral bone. Kim W; Oravec D; Nekkanty S; Yerramshetty J; Sander EA; Divine GW; Flynn MJ; Yeni YN Med Eng Phys; 2015 Jan; 37(1):109-20. PubMed ID: 25498138 [TBL] [Abstract][Full Text] [Related]
20. [Trabecular bone microarchitecture and male osteoporosis]. Legrand E; Chappard D; Pascaretti C; Duquenne M; Rohmer V; Basle MF; Audran M Morphologie; 1999 Jun; 83(261):35-40. PubMed ID: 10546234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]