BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 16920072)

  • 1. Regulation of inflammation and redox signaling by dietary polyphenols.
    Rahman I; Biswas SK; Kirkham PA
    Biochem Pharmacol; 2006 Nov; 72(11):1439-52. PubMed ID: 16920072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression.
    Rahman I; Marwick J; Kirkham P
    Biochem Pharmacol; 2004 Sep; 68(6):1255-67. PubMed ID: 15313424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphenols and inflammation: basic interactions.
    Biesalski HK
    Curr Opin Clin Nutr Metab Care; 2007 Nov; 10(6):724-8. PubMed ID: 18089954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells.
    Nair S; Li W; Kong AN
    Acta Pharmacol Sin; 2007 Apr; 28(4):459-72. PubMed ID: 17376285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?
    Haddad JJ; Harb HL
    Mol Immunol; 2005 May; 42(9):987-1014. PubMed ID: 15829290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of steroid activity in chronic inflammation: a novel anti-inflammatory role for curcumin.
    Biswas S; Rahman I
    Mol Nutr Food Res; 2008 Sep; 52(9):987-94. PubMed ID: 18327875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and redox regulation of lung inflammation in COPD.
    Rahman I; Adcock IM
    Eur Respir J; 2006 Jul; 28(1):219-42. PubMed ID: 16816350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats.
    Dolara P; Luceri C; De Filippo C; Femia AP; Giovannelli L; Caderni G; Cecchini C; Silvi S; Orpianesi C; Cresci A
    Mutat Res; 2005 Dec; 591(1-2):237-46. PubMed ID: 16293270
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyphenols, intracellular signalling and inflammation.
    Santangelo C; Varì R; Scazzocchio B; Di Benedetto R; Filesi C; Masella R
    Ann Ist Super Sanita; 2007; 43(4):394-405. PubMed ID: 18209273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vascular protection by dietary polyphenols.
    Stoclet JC; Chataigneau T; Ndiaye M; Oak MH; El Bedoui J; Chataigneau M; Schini-Kerth VB
    Eur J Pharmacol; 2004 Oct; 500(1-3):299-313. PubMed ID: 15464042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights on the anticancer properties of dietary polyphenols.
    Fresco P; Borges F; Diniz C; Marques MP
    Med Res Rev; 2006 Nov; 26(6):747-66. PubMed ID: 16710860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro effects of tea polyphenols on redox metabolism, oxidative stress, and apoptosis in PC12 cells.
    Raza H; John A
    Ann N Y Acad Sci; 2008 Sep; 1138():358-65. PubMed ID: 18837911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative stress and Alzheimer's disease: dietary polyphenols as potential therapeutic agents.
    Darvesh AS; Carroll RT; Bishayee A; Geldenhuys WJ; Van der Schyf CJ
    Expert Rev Neurother; 2010 May; 10(5):729-45. PubMed ID: 20420493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When nutrition interacts with osteoblast function: molecular mechanisms of polyphenols.
    Trzeciakiewicz A; Habauzit V; Horcajada MN
    Nutr Res Rev; 2009 Jun; 22(1):68-81. PubMed ID: 19243669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant and signal modulation properties of plant polyphenols in controlling vascular inflammation.
    Kostyuk VA; Potapovich AI; Suhan TO; de Luca C; Korkina LG
    Eur J Pharmacol; 2011 May; 658(2-3):248-56. PubMed ID: 21371465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of redox-sensitive transcription factors NF-kappaB and AP-1 in the modulation of the Cyp1a1 gene by mercury, lead, and copper.
    Korashy HM; El-Kadi AO
    Free Radic Biol Med; 2008 Mar; 44(5):795-806. PubMed ID: 18078826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox regulation of lung inflammation: role of NADPH oxidase and NF-kappaB signalling.
    Yao H; Yang SR; Kode A; Rajendrasozhan S; Caito S; Adenuga D; Henry R; Edirisinghe I; Rahman I
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1151-5. PubMed ID: 17956299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes.
    Masella R; Di Benedetto R; Varì R; Filesi C; Giovannini C
    J Nutr Biochem; 2005 Oct; 16(10):577-86. PubMed ID: 16111877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Polyphenols and endogenous antioxidant defences: effects on glutathione and glutathione related enzymes].
    Giovannini C; Filesi C; D'Archivio M; Scazzocchio B; Santangelo C; Masella R
    Ann Ist Super Sanita; 2006; 42(3):336-47. PubMed ID: 17124358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms.
    Singh M; Arseneault M; Sanderson T; Murthy V; Ramassamy C
    J Agric Food Chem; 2008 Jul; 56(13):4855-73. PubMed ID: 18557624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.