BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 16920072)

  • 21. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts.
    Kidd PM
    Altern Med Rev; 2009 Sep; 14(3):226-46. PubMed ID: 19803548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synergy research: vitamins and secondary plant components in the maintenance of the redox-homeostasis and in cell signaling.
    Ulrich-Merzenich G; Zeitler H; Vetter H; Kraft K
    Phytomedicine; 2009 Jan; 16(1):2-16. PubMed ID: 19118991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways.
    Ramos S
    Mol Nutr Food Res; 2008 May; 52(5):507-26. PubMed ID: 18435439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NF-kappa B and Nrf2 as potential chemopreventive targets of some anti-inflammatory and antioxidative phytonutrients with anti-inflammatory and antioxidative activities.
    Surh YJ
    Asia Pac J Clin Nutr; 2008; 17 Suppl 1():269-72. PubMed ID: 18296353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Therapeutic strategies by modulating oxygen stress in cancer and inflammation.
    Fang J; Seki T; Maeda H
    Adv Drug Deliv Rev; 2009 Apr; 61(4):290-302. PubMed ID: 19249331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutathione in liver diseases and hepatotoxicity.
    Yuan L; Kaplowitz N
    Mol Aspects Med; 2009; 30(1-2):29-41. PubMed ID: 18786561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dietary polyphenols, inflammation, and cancer.
    Guo W; Kong E; Meydani M
    Nutr Cancer; 2009; 61(6):807-10. PubMed ID: 20155620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sphingolipid signaling and redox regulation.
    Won JS; Singh I
    Free Radic Biol Med; 2006 Jun; 40(11):1875-88. PubMed ID: 16716889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases.
    Mitjavila MT; Moreno JJ
    Biochem Pharmacol; 2012 Nov; 84(9):1113-22. PubMed ID: 22858365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dietary green tea polyphenols do not affect vitamin E status, antioxidant capacity and meat quality of growing pigs.
    Augustin K; Blank R; Boesch-Saadatmandi C; Frank J; Wolffram S; Rimbach G
    J Anim Physiol Anim Nutr (Berl); 2008 Dec; 92(6):705-11. PubMed ID: 19012616
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A review of the interaction among dietary antioxidants and reactive oxygen species.
    Seifried HE; Anderson DE; Fisher EI; Milner JA
    J Nutr Biochem; 2007 Sep; 18(9):567-79. PubMed ID: 17360173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-kappaB activation.
    Röder-Stolinski C; Fischäder G; Oostingh GJ; Feltens R; Kohse F; von Bergen M; Mörbt N; Eder K; Duschl A; Lehmann I
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):241-7. PubMed ID: 18554678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of food polyphenols on aryl hydrocarbon receptor-signaling pathway estimated by in vitro bioassay.
    Amakura Y; Tsutsumi T; Sasaki K; Nakamura M; Yoshida T; Maitani T
    Phytochemistry; 2008 Dec; 69(18):3117-30. PubMed ID: 17869316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dietary polyphenols as antioxidants and anticancer agents: more questions than answers.
    Hu ML
    Chang Gung Med J; 2011; 34(5):449-60. PubMed ID: 22035889
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Grape and wine polyphenols down-regulate the expression of signal transduction genes and inhibit the growth of estrogen receptor-negative MDA-MB231 tumors in nu/nu mouse xenografts.
    Hakimuddin F; Tiwari K; Paliyath G; Meckling K
    Nutr Res; 2008 Oct; 28(10):702-13. PubMed ID: 19083478
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial and host cells acquire enhanced oxidant-scavenging abilities by binding polyphenols.
    Ginsburg I; Kohen R; Koren E
    Arch Biochem Biophys; 2011 Feb; 506(1):12-23. PubMed ID: 21081104
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-kappaB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage.
    Kim HG; Yoon DH; Lee WH; Han SK; Shrestha B; Kim CH; Lim MH; Chang W; Lim S; Choi S; Song WO; Sung JM; Hwang KC; Kim TW
    J Ethnopharmacol; 2007 Dec; 114(3):307-15. PubMed ID: 17936530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antioxidative and oxidative changes in the digestive gland cells of freshwater mussels Unio tumidus caused by selected phenolic compounds in the presence of H(2)O(2) or Cu(2+) ions.
    Labieniec M; Gabryelak T
    Toxicol In Vitro; 2007 Feb; 21(1):146-56. PubMed ID: 17084585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dietary phenolics: chemistry, bioavailability and effects on health.
    Crozier A; Jaganath IB; Clifford MN
    Nat Prod Rep; 2009 Aug; 26(8):1001-43. PubMed ID: 19636448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dietary flavonoid (-)epicatechin stimulates phosphatidylinositol 3-kinase-dependent anti-oxidant response element activity and up-regulates glutathione in cortical astrocytes.
    Bahia PK; Rattray M; Williams RJ
    J Neurochem; 2008 Sep; 106(5):2194-204. PubMed ID: 18624917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.