BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16920133)

  • 1. Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent.
    Deliyanni EA; Nalbandian L; Matis KA
    J Colloid Interface Sci; 2006 Oct; 302(2):458-66. PubMed ID: 16920133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromium(VI) sorptive removal from aqueous solutions by nanocrystalline akaganèite.
    Lazaridis NK; Bakoyannakis DN; Deliyanni EA
    Chemosphere; 2005 Jan; 58(1):65-73. PubMed ID: 15522334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of removal of arsenic by bead cellulose loaded with iron oxyhydroxide (beta-FeOOH): EXAFS study.
    Guo X; Du Y; Chen F; Park HS; Xie Y
    J Colloid Interface Sci; 2007 Oct; 314(2):427-33. PubMed ID: 17604042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption properties of Congo Red from aqueous solution onto surfactant-modified montmorillonite.
    Wang L; Wang A
    J Hazard Mater; 2008 Dec; 160(1):173-80. PubMed ID: 18400385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of fluoride from aqueous phase by biosorption onto algal biosorbent Spirogyra sp.-IO2: sorption mechanism elucidation.
    Venkata Mohan S; Ramanaiah SV; Rajkumar B; Sarma PN
    J Hazard Mater; 2007 Mar; 141(3):465-74. PubMed ID: 16920254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of arsenate by an alginate-encapsulated magnetic sorbent: process performance and characterization of adsorption chemistry.
    Lim SF; Zheng YM; Zou SW; Chen JP
    J Colloid Interface Sci; 2009 May; 333(1):33-9. PubMed ID: 19223042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anionic groups on cellulosic fiber surfaces investigated by XPS, FTIR-ATR, and different sorption methods.
    Fardim P; Moreno T; Holmbom B
    J Colloid Interface Sci; 2005 Oct; 290(2):383-91. PubMed ID: 15939426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorption of uranium(VI) from aqueous solutions by akaganeite.
    Yusan SD; Akyil S
    J Hazard Mater; 2008 Dec; 160(2-3):388-95. PubMed ID: 18406521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iron-oxide-modified nanosized diamond: preparation, characterization, and catalytic properties in methanol decomposition.
    Tsoncheva T; Ivanova L; Paneva D; Dimitrov M; Mitov I; Stavrev S; Minchev C
    J Colloid Interface Sci; 2006 Oct; 302(2):492-500. PubMed ID: 16876813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorption of p-nitrophenol by anion-cation modified palygorskite.
    Chang Y; Lv X; Zha F; Wang Y; Lei Z
    J Hazard Mater; 2009 Sep; 168(2-3):826-31. PubMed ID: 19304381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated carbon from Ceiba pentandra hulls, an agricultural waste, as an adsorbent in the removal of lead and zinc from aqueous solutions.
    Rao MM; Rao GP; Seshaiah K; Choudary NV; Wang MC
    Waste Manag; 2008; 28(5):849-58. PubMed ID: 17416512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of nickel from aqueous solutions by Acacia leucocephala bark: Kinetics and equilibrium studies.
    Subbaiah MV; Vijaya Y; Kumar NS; Reddy AS; Krishnaiah A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):260-5. PubMed ID: 19716275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of copper(II) ions from aqueous solution by modified bagasse.
    Jiang Y; Pang H; Liao B
    J Hazard Mater; 2009 May; 164(1):1-9. PubMed ID: 18790566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan-calcium alginate blended beads.
    Nadavala SK; Swayampakula K; Boddu VM; Abburi K
    J Hazard Mater; 2009 Feb; 162(1):482-9. PubMed ID: 18573601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of phenol and 4-chlorophenol by surfactant-modified natural zeolite.
    Kuleyin A
    J Hazard Mater; 2007 Jun; 144(1-2):307-15. PubMed ID: 17112660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complexes of fulvic acid on the surface of hematite, goethite, and akaganeite: FTIR observation.
    Fu H; Quan X
    Chemosphere; 2006 Apr; 63(3):403-10. PubMed ID: 16293289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorptive removal of methylene blue by tea waste.
    Uddin MT; Islam MA; Mahmud S; Rukanuzzaman M
    J Hazard Mater; 2009 May; 164(1):53-60. PubMed ID: 18801614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced adsorption of arsenate on the aminated fibers: sorption behavior and uptake mechanism.
    Deng S; Yu G; Xie S; Yu Q; Huang J; Kuwaki Y; Iseki M
    Langmuir; 2008 Oct; 24(19):10961-7. PubMed ID: 18771297
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption of lead from aqueous solution by seed powder of Strychnos potatorum L.
    Jayaram K; Murthy IY; Lalhruaitluanga H; Prasad MN
    Colloids Surf B Biointerfaces; 2009 Jul; 71(2):248-54. PubMed ID: 19321318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic arsenic adsorption onto a magnetic sorbent.
    Lim SF; Zheng YM; Chen JP
    Langmuir; 2009 May; 25(9):4973-8. PubMed ID: 19323493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.