These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 16920182)
41. Interval timing relative to response inhibition in the differential reinforcement of low-rate responding in normally developing young adults. Yang TH; Liao RM; Su CI; Chien CY; Ng CT; Yen NS Sci Rep; 2023 Jul; 13(1):11977. PubMed ID: 37488262 [TBL] [Abstract][Full Text] [Related]
42. Interoceptive accuracy correlates with precision of time perception in the millisecond range. Uraguchi M; Maulina VVR; Ohira H Front Neurosci; 2022; 16():993491. PubMed ID: 36452334 [TBL] [Abstract][Full Text] [Related]
43. The role of valence, arousal, stimulus type, and temporal paradigm in the effect of emotion on time perception: A meta-analysis. Cui X; Tian Y; Zhang L; Chen Y; Bai Y; Li D; Liu J; Gable P; Yin H Psychon Bull Rev; 2023 Feb; 30(1):1-21. PubMed ID: 35879593 [TBL] [Abstract][Full Text] [Related]
44. mPFC catecholamines modulate attentional capture by appetitive distracters and attention to time in a peak-interval procedure in rats. Buhusi CV; Matthews AR; Buhusi M Behav Neurosci; 2022 Oct; 136(5):418-429. PubMed ID: 35834191 [TBL] [Abstract][Full Text] [Related]
45. Time Perception in Cocaine-Dependent Patients. Mioni G; Sanguin N; Madeo G; Cardullo S Brain Sci; 2022 Jun; 12(6):. PubMed ID: 35741630 [TBL] [Abstract][Full Text] [Related]
46. Effects of ketamine optical isomers, psilocybin, psilocin and norpsilocin on time estimation and cognition in rats. Popik P; Hogendorf A; Bugno R; Khoo SY; Zajdel P; Malikowska-Racia N; Nikiforuk A; Golebiowska J Psychopharmacology (Berl); 2022 Jun; 239(6):1689-1703. PubMed ID: 35234983 [TBL] [Abstract][Full Text] [Related]
47. Blockade of Catecholamine Reuptake in the Prelimbic Cortex Decreases Top-down Attentional Control in Response to Novel, but Not Familiar Appetitive Distracters, within a Timing Paradigm. Matthews AR; Buhusi M; Buhusi CV NeuroSci; 2020 Dec; 1(2):99-114. PubMed ID: 35036990 [TBL] [Abstract][Full Text] [Related]
48. How Psychoactive Drugs and the Circadian Clock Are Enlightening One Another. Engmann O Adv Exp Med Biol; 2021; 1344():129-152. PubMed ID: 34773230 [TBL] [Abstract][Full Text] [Related]
49. Comparative effects of cannabinoid CB1 receptor agonist and antagonist on timing impulsivity induced by d-amphetamine in a differential reinforcement of low-rate response task in male rats. Chen SF; Hsu WC; Lu XY; Chuang CY; Liao RM Psychopharmacology (Berl); 2022 May; 239(5):1459-1473. PubMed ID: 34741633 [TBL] [Abstract][Full Text] [Related]
50. Task-Dependent Effects of SKF83959 on Operant Behaviors Associated With Distinct Changes of CaMKII Signaling in Striatal Subareas. Liu PP; Chao CC; Liao RM Int J Neuropsychopharmacol; 2021 Sep; 24(9):721-733. PubMed ID: 34049400 [TBL] [Abstract][Full Text] [Related]
51. Time Distortions: A Systematic Review of Cases Characteristic of Alice in Wonderland Syndrome. Blom JD; Nanuashvili N; Waters F Front Psychiatry; 2021; 12():668633. PubMed ID: 34025485 [TBL] [Abstract][Full Text] [Related]
52. "Time Slows Down Whenever You Are Around" for Women but Not for Men. Arantes J; Pinho M; Wearden J; Albuquerque PB Front Psychol; 2021; 12():641729. PubMed ID: 33889113 [TBL] [Abstract][Full Text] [Related]
53. Dopamine and the interdependency of time perception and reward. Fung BJ; Sutlief E; Hussain Shuler MG Neurosci Biobehav Rev; 2021 Jun; 125():380-391. PubMed ID: 33652021 [TBL] [Abstract][Full Text] [Related]
54. The synthetic cathinone 3,4-methylenedioxypyrovalerone increases impulsive action in rats. Hyatt WS; Hirsh CE; Russell LN; Chitre NM; Murnane KS; Rice KC; Fantegrossi WE Behav Pharmacol; 2020 Jun; 31(4):309-321. PubMed ID: 32101987 [TBL] [Abstract][Full Text] [Related]
55. Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons. Yousefzadeh SA; Hesslow G; Shumyatsky GP; Meck WH Front Mol Neurosci; 2019; 12():321. PubMed ID: 31998074 [TBL] [Abstract][Full Text] [Related]
56. Task-Dependent Differences in Operant Behaviors of Rats With Acute Exposure to High Ambient Temperature: A Potential Role of Hippocampal Dopamine Reuptake Transporters. Chen SF; Chuang CY; Chao CC; Yang YH; Chu CY; Yao CY; Su YC; Huang YH; Liao RM Front Behav Neurosci; 2019; 13():15. PubMed ID: 30778291 [TBL] [Abstract][Full Text] [Related]
58. Functional coding variation in the presynaptic dopamine transporter associated with neuropsychiatric disorders drives enhanced motivation and context-dependent impulsivity in mice. Davis GL; Stewart A; Stanwood GD; Gowrishankar R; Hahn MK; Blakely RD Behav Brain Res; 2018 Jan; 337():61-69. PubMed ID: 28964912 [TBL] [Abstract][Full Text] [Related]
59. The influence of fundamental frequency on perceived duration in spectrally comparable sounds. Dawson C; Aalto D; Simko J; Vainio M PeerJ; 2017; 5():e3734. PubMed ID: 28879063 [TBL] [Abstract][Full Text] [Related]
60. Everywhere and everything: The power and ubiquity of time. Marshall AT; Kirkpatrick K Int J Comp Psychol; 2015; 28():. PubMed ID: 28392622 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]