BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 16920661)

  • 1. SAR and QSAR modeling of endocrine disruptors.
    Devillers J; Marchand-Geneste N; Carpy A; Porcher JM
    SAR QSAR Environ Res; 2006 Aug; 17(4):393-412. PubMed ID: 16920661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of receptor-mediated environmental toxic phenomena-application to endocrine disruption.
    Lill MA; Dobler M; Vedani A
    SAR QSAR Environ Res; 2005; 16(1-2):149-69. PubMed ID: 15844448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR modeling and prediction of the endocrine-disrupting potencies of brominated flame retardants.
    Papa E; Kovarich S; Gramatica P
    Chem Res Toxicol; 2010 May; 23(5):946-54. PubMed ID: 20408563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and QSAR modeling on multiple endpoints of estrogen activity based on different bioassays.
    Liu H; Papa E; Gramatica P
    Chemosphere; 2008 Feb; 70(10):1889-97. PubMed ID: 17884132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combining protein modeling and 6D-QSAR. Simulating the binding of structurally diverse ligands to the estrogen receptor.
    Vedani A; Dobler M; Lill MA
    J Med Chem; 2005 Jun; 48(11):3700-3. PubMed ID: 15916421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endocrine disruption profile analysis of 11,416 chemicals from chemometrical tools.
    Devillers J; Marchand-Geneste N; Doré JC; Porcher JM; Poroikov V
    SAR QSAR Environ Res; 2007; 18(3-4):181-93. PubMed ID: 17514564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles.
    Liu H; Papa E; Gramatica P
    Chem Res Toxicol; 2006 Nov; 19(11):1540-8. PubMed ID: 17112243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico tools to aid risk assessment of endocrine disrupting chemicals.
    Jacobs MN
    Toxicology; 2004 Dec; 205(1-2):43-53. PubMed ID: 15458789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR classification models for the prediction of endocrine disrupting activity of brominated flame retardants.
    Kovarich S; Papa E; Gramatica P
    J Hazard Mater; 2011 Jun; 190(1-3):106-12. PubMed ID: 21454014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks.
    Stojić N; Erić S; Kuzmanovski I
    J Mol Graph Model; 2010 Nov; 29(3):450-60. PubMed ID: 20952233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volume learning algorithm significantly improved PLS model for predicting the estrogenic activity of xenoestrogens.
    Kovalishyn VV; Kholodovych V; Tetko IV; Welsh WJ
    J Mol Graph Model; 2007 Sep; 26(2):591-4. PubMed ID: 17433745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico screening of estrogen-like chemicals based on different nonlinear classification models.
    Liu H; Papa E; Walker JD; Gramatica P
    J Mol Graph Model; 2007 Jul; 26(1):135-44. PubMed ID: 17293141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of induced fit on ligand binding to the androgen receptor: a multidimensional QSAR study to predict endocrine-disrupting effects of environmental chemicals.
    Lill MA; Winiger F; Vedani A; Ernst B
    J Med Chem; 2005 Sep; 48(18):5666-74. PubMed ID: 16134935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-androgen activity of polybrominated diphenyl ethers determined by comparative molecular similarity indices and molecular docking.
    Yang W; Mu Y; Giesy JP; Zhang A; Yu H
    Chemosphere; 2009 May; 75(9):1159-64. PubMed ID: 19324393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human sex hormone-binding globulin binding affinities of 125 structurally diverse chemicals and comparison with their binding to androgen receptor, estrogen receptor, and α-fetoprotein.
    Hong H; Branham WS; Ng HW; Moland CL; Dial SL; Fang H; Perkins R; Sheehan D; Tong W
    Toxicol Sci; 2015 Feb; 143(2):333-48. PubMed ID: 25349334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR classification of estrogen receptor binders and pre-screening of potential pleiotropic EDCs.
    Li J; Gramatica P
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):657-69. PubMed ID: 21120754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. QSAR and mechanistic interpretation of estrogen receptor binding.
    Serafimova R; Todorov M; Nedelcheva D; Pavlov T; Akahori Y; Nakai M; Mekenyan O
    SAR QSAR Environ Res; 2007; 18(3-4):389-421. PubMed ID: 17514577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant human estrogen, androgen and progesterone receptors for detection of potential endocrine disruptors.
    Scippo ML; Argiris C; Van De Weerdt C; Muller M; Willemsen P; Martial J; Maghuin-Rogister G
    Anal Bioanal Chem; 2004 Feb; 378(3):664-9. PubMed ID: 14579009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [SAR and QSAR methods in the study of dioxin action].
    Piskorska-Pliszczyńska J
    Rocz Panstw Zakl Hig; 1998; 49(4):433-45. PubMed ID: 10224888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.