These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 16920662)
1. A conceptual framework for predicting the toxicity of reactive chemicals: modeling soft electrophilicity. Schultz TW; Carlson RE; Cronin MT; Hermens JL; Johnson R; O'Brien PJ; Roberts DW; Siraki A; Wallace KB; Veith GD SAR QSAR Environ Res; 2006 Aug; 17(4):413-28. PubMed ID: 16920662 [TBL] [Abstract][Full Text] [Related]
2. The electronic factor in QSAR: MO-parameters, competing interactions, reactivity and toxicity. Mekenyan OG; Veith GD SAR QSAR Environ Res; 1994; 2(1-2):129-43. PubMed ID: 8790643 [TBL] [Abstract][Full Text] [Related]
3. Experimental reactivity parameters for toxicity modeling: application to the acute aquatic toxicity of SN2 electrophiles to Tetrahymena pyriformis. Roberts DW; Schultz TW; Wolf EM; Aptula AO Chem Res Toxicol; 2010 Jan; 23(1):228-34. PubMed ID: 19928804 [TBL] [Abstract][Full Text] [Related]
4. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis. Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912 [TBL] [Abstract][Full Text] [Related]
5. Identification of reactive toxicants: structure-activity relationships for amides. Schultz TW; Yarbrough JW; Koss SK Cell Biol Toxicol; 2006 Sep; 22(5):339-49. PubMed ID: 16845611 [TBL] [Abstract][Full Text] [Related]
6. Non-enzymatic glutathione reactivity and in vitro toxicity: a non-animal approach to skin sensitization. Aptula AO; Patlewicz G; Roberts DW; Schultz TW Toxicol In Vitro; 2006 Mar; 20(2):239-47. PubMed ID: 16112535 [TBL] [Abstract][Full Text] [Related]
7. Predicting modes of toxic action from chemical structure: an overview. Bradbury SP SAR QSAR Environ Res; 1994; 2(1-2):89-104. PubMed ID: 8790641 [TBL] [Abstract][Full Text] [Related]
8. Prediction of acute mammalian toxicity from QSARs and interspecies correlations. Devillers J; Devillers H SAR QSAR Environ Res; 2009 Jul; 20(5-6):467-500. PubMed ID: 19916110 [TBL] [Abstract][Full Text] [Related]
9. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223 [TBL] [Abstract][Full Text] [Related]
10. Electrophilicity as a possible descriptor for toxicity prediction. Roy DR; Parthasarathi R; Maiti B; Subramanian V; Chattaraj PK Bioorg Med Chem; 2005 May; 13(10):3405-12. PubMed ID: 15848752 [TBL] [Abstract][Full Text] [Related]
11. Substance-tailored testing strategies in toxicology: an in silico methodology based on QSAR modeling of toxicological thresholds and Monte Carlo simulations of toxicological testing. Péry AR; Desmots S; Mombelli E Regul Toxicol Pharmacol; 2010 Feb; 56(1):82-92. PubMed ID: 19766156 [TBL] [Abstract][Full Text] [Related]
12. Chemistry-toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis. Aptula AO; Roberts DW; Cronin MT; Schultz TW Chem Res Toxicol; 2005 May; 18(5):844-54. PubMed ID: 15892578 [TBL] [Abstract][Full Text] [Related]
13. Ecotoxicity prediction using mechanism- and non-mechanism-based QSARs: a preliminary study. Ren S Chemosphere; 2003 Dec; 53(9):1053-65. PubMed ID: 14512109 [TBL] [Abstract][Full Text] [Related]
14. Quantitative structure-based modeling applied to characterization and prediction of chemical toxicity. Benigni R; Richard AM Methods; 1998 Mar; 14(3):264-76. PubMed ID: 9571083 [TBL] [Abstract][Full Text] [Related]
15. Application of a computational model for Michael addition reactivity in the prediction of toxicity to Tetrahymena pyriformis. Schwöbel JA; Madden JC; Cronin MT Chemosphere; 2011 Oct; 85(6):1066-74. PubMed ID: 21890172 [TBL] [Abstract][Full Text] [Related]
16. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318 [TBL] [Abstract][Full Text] [Related]
17. Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure--activity relationships of xenobiotics: comparison with the Microtox test. Bogaerts P; Bohatier J; Bonnemoy F Ecotoxicol Environ Saf; 2001 Jul; 49(3):293-301. PubMed ID: 11440483 [TBL] [Abstract][Full Text] [Related]
18. Structure-activity relationships for thiol reactivity and rat or human hepatocyte toxicity induced by substituted p-benzoquinone compounds. Chan K; Jensen N; O'Brien PJ J Appl Toxicol; 2008 Jul; 28(5):608-20. PubMed ID: 17975849 [TBL] [Abstract][Full Text] [Related]
19. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks. Kahn I; Sild S; Maran U J Chem Inf Model; 2007; 47(6):2271-9. PubMed ID: 17985864 [TBL] [Abstract][Full Text] [Related]
20. Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity. Zvinavashe E; Murk AJ; Rietjens IM Chem Res Toxicol; 2008 Dec; 21(12):2229-36. PubMed ID: 19548346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]