BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16921204)

  • 1. Seperability of four-class motor imagery data using independent components analysis.
    Naeem M; Brunner C; Leeb R; Graimann B; Pfurtscheller G
    J Neural Eng; 2006 Sep; 3(3):208-16. PubMed ID: 16921204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy.
    Kamousi B; Amini AN; He B
    J Neural Eng; 2007 Jun; 4(2):17-25. PubMed ID: 17409476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of four-class motor imagery EEG data for the BCI-competition 2005.
    Schlögl A; Lee F; Bischof H; Pfurtscheller G
    J Neural Eng; 2005 Dec; 2(4):L14-22. PubMed ID: 16317224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of common spatial patterns with complex band power features in a four-class BCI experiment.
    Townsend G; Graimann B; Pfurtscheller G
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):642-51. PubMed ID: 16602570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bipolar electrode selection for a motor imagery based brain-computer interface.
    Lou B; Hong B; Gao X; Gao S
    J Neural Eng; 2008 Sep; 5(3):342-9. PubMed ID: 18756030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-channel linear descriptors for event-related EEG collected in brain computer interface.
    Pei XM; Zheng CX; Xu J; Bin GY; Wang HW
    J Neural Eng; 2006 Mar; 3(1):52-8. PubMed ID: 16510942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain-computer interface.
    Wang T; He B
    J Neural Eng; 2004 Mar; 1(1):1-7. PubMed ID: 15876616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-trial lambda wave identification using a fuzzy inference system and predictive statistical diagnosis.
    Saatchi R
    J Neural Eng; 2004 Mar; 1(1):21-31. PubMed ID: 15876619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BCI Competition 2003--Data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements.
    Lemm S; Schäfer C; Curio G
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1077-80. PubMed ID: 15188882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring virtual environments with an EEG-based BCI through motor imagery.
    Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G
    Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BCI Competition 2003--Data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG.
    Wang Y; Zhang Z; Li Y; Gao X; Gao S; Yang F
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1081-6. PubMed ID: 15188883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification.
    Herman P; Prasad G; McGinnity TM; Coyle D
    IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):317-26. PubMed ID: 18701380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying the use of fuzzy inference systems for motor imagery classification.
    Fabien L; Anatole L; Fabrice L; Bruno A
    IEEE Trans Neural Syst Rehabil Eng; 2007 Jun; 15(2):322-4. PubMed ID: 17601202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On variability and use of rat primary motor cortex responses in behavioral task discrimination.
    Jensen W; Rousche PJ
    J Neural Eng; 2006 Mar; 3(1):L7-13. PubMed ID: 16510934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitude and phase coupling measures for feature extraction in an EEG-based brain-computer interface.
    Wei Q; Wang Y; Gao X; Gao S
    J Neural Eng; 2007 Jun; 4(2):120-9. PubMed ID: 17409486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of EEG modifications due to motor imagery for brain-computer interfaces.
    Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces.
    Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK
    IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2730-3. PubMed ID: 19605314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of single-trial electroencephalogram during finger movement.
    Li Y; Gao X; Liu H; Gao S
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1019-25. PubMed ID: 15188873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.