These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1031 related articles for article (PubMed ID: 16921207)
1. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings. Ince NF; Arica S; Tewfik A J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207 [TBL] [Abstract][Full Text] [Related]
2. Extraction subject-specific motor imagery time-frequency patterns for single trial EEG classification. Ince NF; Tewfik AH; Arica S Comput Biol Med; 2007 Apr; 37(4):499-508. PubMed ID: 17010962 [TBL] [Abstract][Full Text] [Related]
3. An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in a brain-computer interface. Wang T; He B J Neural Eng; 2004 Mar; 1(1):1-7. PubMed ID: 15876616 [TBL] [Abstract][Full Text] [Related]
4. A time-series prediction approach for feature extraction in a brain-computer interface. Coyle D; Prasad G; McGinnity TM IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):461-7. PubMed ID: 16425827 [TBL] [Abstract][Full Text] [Related]
5. BCI Competition 2003--Data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. Wang Y; Zhang Z; Li Y; Gao X; Gao S; Yang F IEEE Trans Biomed Eng; 2004 Jun; 51(6):1081-6. PubMed ID: 15188883 [TBL] [Abstract][Full Text] [Related]
6. BCI Competition 2003--Data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements. Lemm S; Schäfer C; Curio G IEEE Trans Biomed Eng; 2004 Jun; 51(6):1077-80. PubMed ID: 15188882 [TBL] [Abstract][Full Text] [Related]
7. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK IEEE Trans Biomed Eng; 2009 Nov; 56(11 Pt 2):2730-3. PubMed ID: 19605314 [TBL] [Abstract][Full Text] [Related]
8. A comparison of common spatial patterns with complex band power features in a four-class BCI experiment. Townsend G; Graimann B; Pfurtscheller G IEEE Trans Biomed Eng; 2006 Apr; 53(4):642-51. PubMed ID: 16602570 [TBL] [Abstract][Full Text] [Related]
9. Study of on-line adaptive discriminant analysis for EEG-based brain computer interfaces. Vidaurre C; Schlögl A; Cabeza R; Scherer R; Pfurtscheller G IEEE Trans Biomed Eng; 2007 Mar; 54(3):550-6. PubMed ID: 17355071 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. Herman P; Prasad G; McGinnity TM; Coyle D IEEE Trans Neural Syst Rehabil Eng; 2008 Aug; 16(4):317-26. PubMed ID: 18701380 [TBL] [Abstract][Full Text] [Related]
11. Classification of motor imagery by means of cortical current density estimation and Von Neumann entropy. Kamousi B; Amini AN; He B J Neural Eng; 2007 Jun; 4(2):17-25. PubMed ID: 17409476 [TBL] [Abstract][Full Text] [Related]
12. Adaptive tracking of discriminative frequency components in electroencephalograms for a robust brain-computer interface. Thomas KP; Guan C; Lau CT; Vinod AP; Ang KK J Neural Eng; 2011 Jun; 8(3):036007. PubMed ID: 21478575 [TBL] [Abstract][Full Text] [Related]
13. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. Kamousi B; Liu Z; He B IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895 [TBL] [Abstract][Full Text] [Related]
14. Exploring virtual environments with an EEG-based BCI through motor imagery. Leeb R; Scherer R; Keinrath C; Guger C; Pfurtscheller G Biomed Tech (Berl); 2005 Apr; 50(4):86-91. PubMed ID: 15884704 [TBL] [Abstract][Full Text] [Related]
15. A fully on-line adaptive BCI. Vidaurre C; Schlögl A; Cabeza R; Scherer R; Pfurtscheller G IEEE Trans Biomed Eng; 2006 Jun; 53(6):1214-9. PubMed ID: 16761852 [TBL] [Abstract][Full Text] [Related]
16. Amplitude and phase coupling measures for feature extraction in an EEG-based brain-computer interface. Wei Q; Wang Y; Gao X; Gao S J Neural Eng; 2007 Jun; 4(2):120-9. PubMed ID: 17409486 [TBL] [Abstract][Full Text] [Related]
17. Characterization of four-class motor imagery EEG data for the BCI-competition 2005. Schlögl A; Lee F; Bischof H; Pfurtscheller G J Neural Eng; 2005 Dec; 2(4):L14-22. PubMed ID: 16317224 [TBL] [Abstract][Full Text] [Related]
18. Online control of a brain-computer interface using phase synchronization. Brunner C; Scherer R; Graimann B; Supp G; Pfurtscheller G IEEE Trans Biomed Eng; 2006 Dec; 53(12 Pt 1):2501-6. PubMed ID: 17153207 [TBL] [Abstract][Full Text] [Related]
19. Classification of the intention to generate a shoulder versus elbow torque by means of a time-frequency synthesized spatial patterns BCI algorithm. Deng J; Yao J; Dewald JP J Neural Eng; 2005 Dec; 2(4):131-8. PubMed ID: 16317237 [TBL] [Abstract][Full Text] [Related]
20. Support vector channel selection in BCI. Lal TN; Schröder M; Hinterberger T; Weston J; Bogdan M; Birbaumer N; Schölkopf B IEEE Trans Biomed Eng; 2004 Jun; 51(6):1003-10. PubMed ID: 15188871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]