BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16921497)

  • 21. Cardiac-phase filtering in intracardiac particle image velocimetry.
    Jamison RA; Fouras A; Bryson-Richardson RJ
    J Biomed Opt; 2012 Mar; 17(3):036007. PubMed ID: 22502565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A dual epimorphic and compensatory mode of heart regeneration in zebrafish.
    Sallin P; de Preux Charles AS; Duruz V; Pfefferli C; Jaźwińska A
    Dev Biol; 2015 Mar; 399(1):27-40. PubMed ID: 25557620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo imaging of the cyclic changes in cross-sectional shape of the ventricular segment of pulsating embryonic chick hearts at stages 14 to 17: a contribution to the understanding of the ontogenesis of cardiac pumping function.
    Männer J; Thrane L; Norozi K; Yelbuz TM
    Dev Dyn; 2009 Dec; 238(12):3273-84. PubMed ID: 19924823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cells tracking in a live zebrafish embryo.
    Melani C; Campana M; Lombardot B; Rizzi B; Veronesi F; Zanella C; Bourgine P; Mikula K; Peyriéras N; Sarti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1631-4. PubMed ID: 18002285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time in vivo imaging of the beating mouse heart at microscopic resolution.
    Lee S; Vinegoni C; Feruglio PF; Fexon L; Gorbatov R; Pivoravov M; Sbarbati A; Nahrendorf M; Weissleder R
    Nat Commun; 2012; 3():1054. PubMed ID: 22968700
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time multi-angle projection imaging of biological dynamics.
    Chang BJ; Manton JD; Sapoznik E; Pohlkamp T; Terrones TS; Welf ES; Murali VS; Roudot P; Hake K; Whitehead L; York AG; Dean KM; Fiolka R
    Nat Methods; 2021 Jul; 18(7):829-834. PubMed ID: 34183831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Vivo Pressurization of the Zebrafish Embryonic Heart as a Tool to Characterize Tissue Properties During Development.
    Gendernalik A; Zebhi B; Ahuja N; Garrity D; Bark D
    Ann Biomed Eng; 2021 Feb; 49(2):834-845. PubMed ID: 32959136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new method for detection and quantification of heartbeat parameters in Drosophila, zebrafish, and embryonic mouse hearts.
    Fink M; Callol-Massot C; Chu A; Ruiz-Lozano P; Izpisua Belmonte JC; Giles W; Bodmer R; Ocorr K
    Biotechniques; 2009 Feb; 46(2):101-13. PubMed ID: 19317655
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zebrafish cardiac enhancer trap lines: new tools for in vivo studies of cardiovascular development and disease.
    Poon KL; Liebling M; Kondrychyn I; Garcia-Lecea M; Korzh V
    Dev Dyn; 2010 Mar; 239(3):914-26. PubMed ID: 20063419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift.
    Burghardt TP; Sun X; Wang Y; Ajtai K
    PLoS One; 2017; 12(4):e0174690. PubMed ID: 28423017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Confocal microscopic analysis of morphogenetic movements.
    Cooper MS; D'Amico LA; Henry CA
    Methods Cell Biol; 1999; 59():179-204. PubMed ID: 9891361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microscopic imaging of extended tissue volumes.
    LeGrice I; Sands G; Hooks D; Gerneke D; Smaill B
    Clin Exp Pharmacol Physiol; 2004 Dec; 31(12):902-5. PubMed ID: 15659057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.
    Weber M; Huisken J
    Swiss Med Wkly; 2015; 145():w14227. PubMed ID: 26700795
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Images in cardiovascular medicine. Functional cardiac phenotypes in zebrafish caldesmon morphants: a digital motion analysis.
    Zheng PP; Severijnen LA; Willemsen R; Kros JM
    Circulation; 2009 Oct; 120(17):e145-6. PubMed ID: 19858420
    [No Abstract]   [Full Text] [Related]  

  • 35. Large-scale zebrafish embryonic heart dissection for transcriptional analysis.
    Lombardo VA; Otten C; Abdelilah-Seyfried S
    J Vis Exp; 2015 Jan; (95):52087. PubMed ID: 25651299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Translating GWAS-identified loci for cardiac rhythm and rate using an in vivo image- and CRISPR/Cas9-based approach.
    von der Heyde B; Emmanouilidou A; Mazzaferro E; Vicenzi S; Höijer I; Klingström T; Jumaa S; Dethlefsen O; Snieder H; de Geus E; Ameur A; Ingelsson E; Allalou A; Brooke HL; den Hoed M
    Sci Rep; 2020 Jul; 10(1):11831. PubMed ID: 32678143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optogenetic control of cardiac function.
    Arrenberg AB; Stainier DY; Baier H; Huisken J
    Science; 2010 Nov; 330(6006):971-4. PubMed ID: 21071670
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 4D reconstruction of the beating embryonic heart from two orthogonal sets of parallel optical coherence tomography slice-sequences.
    Bhat S; Larina IV; Larin KV; Dickinson ME; Liebling M
    IEEE Trans Med Imaging; 2013 Mar; 32(3):578-88. PubMed ID: 23221816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of different tissue clearing methods and 3D imaging techniques for visualization of GFP-expressing mouse embryos and embryonic hearts.
    Kolesová H; Čapek M; Radochová B; Janáček J; Sedmera D
    Histochem Cell Biol; 2016 Aug; 146(2):141-52. PubMed ID: 27145961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3-D zebrafish embryo image filtering by nonlinear partial differential equations.
    Rizzi B; Campana M; Zanella C; Melani C; Cunderlik R; Krivá Z; Bourgine P; Mikula K; Peyriéras N; Sarti A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6252-5. PubMed ID: 18003450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.