BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16921548)

  • 1. A two-step method for the introduction of single or multiple defined point mutations into the genome of Saccharomyces cerevisiae.
    Toulmay A; Schneiter R
    Yeast; 2006 Aug; 23(11):825-31. PubMed ID: 16921548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The plasma membrane H(+)-ATPase from the biotrophic rust fungus Uromyces fabae: molecular characterization of the gene (PMA1) and functional expression of the enzyme in yeast.
    Struck C; Siebels C; Rommel O; Wernitz M; Hahn M
    Mol Plant Microbe Interact; 1998 Jun; 11(6):458-65. PubMed ID: 9612944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient degradation of misfolded mutant Pma1 by endoplasmic reticulum-associated degradation requires Atg19 and the Cvt/autophagy pathway.
    Mazón MJ; Eraso P; Portillo F
    Mol Microbiol; 2007 Feb; 63(4):1069-77. PubMed ID: 17238920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between the gene products of pma1 encoding plasma membrane H(+)-ATPase, and pdr1 controlling multiple drug resistance in Saccharomyces cerevisiae.
    Ułaszewski S
    Acta Biochim Pol; 1993; 40(4):487-96. PubMed ID: 8140823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene knockouts, in vivo site-directed mutagenesis and other modifications using the delitto perfetto system in Saccharomyces cerevisiae.
    Stuckey S; Storici F
    Methods Enzymol; 2013; 533():103-31. PubMed ID: 24182920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase.
    Mehlgarten C; Schaffrath R
    Cell Microbiol; 2004 Jun; 6(6):569-80. PubMed ID: 15104597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marker-fusion PCR for one-step mutagenesis of essential genes in yeast.
    Kitazono AA; Tobe BT; Kalton H; Diamant N; Kron SJ
    Yeast; 2002 Jan; 19(2):141-9. PubMed ID: 11788969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 2-microm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae.
    Storici F; Coglievina M; Bruschi CV
    Yeast; 1999 Mar; 15(4):271-83. PubMed ID: 10206187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modules for cloning-free chromatin tagging in Saccharomyces cerevisae.
    Rohner S; Gasser SM; Meister P
    Yeast; 2008 Mar; 25(3):235-9. PubMed ID: 18302313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise gene disruption in Saccharomyces cerevisiae by double fusion polymerase chain reaction.
    Amberg DC; Botstein D; Beasley EM
    Yeast; 1995 Oct; 11(13):1275-80. PubMed ID: 8553698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo site-directed mutagenesis using oligonucleotides.
    Storici F; Lewis LK; Resnick MA
    Nat Biotechnol; 2001 Aug; 19(8):773-6. PubMed ID: 11479573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A functional core of the mitochondrial genome maintenance protein Mgm101p in Saccharomyces cerevisiae determined with a temperature-conditional allele.
    Zuo X; Xue D; Li N; Clark-Walker GD
    FEMS Yeast Res; 2007 Jan; 7(1):131-40. PubMed ID: 17311591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of the S288c genetic background and common auxotrophic markers on mitochondrial DNA function in Saccharomyces cerevisiae.
    Young MJ; Court DA
    Yeast; 2008 Dec; 25(12):903-12. PubMed ID: 19160453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality control of a mutant plasma membrane ATPase: ubiquitylation prevents cell-surface stability.
    Liu Y; Chang A
    J Cell Sci; 2006 Jan; 119(Pt 2):360-9. PubMed ID: 16410553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Asymmetric overlap extension PCR method bypassing intermediate purification and the amplification of wild-type template in site-directed mutagenesis.
    Xiao YH; Yin MH; Hou L; Luo M; Pei Y
    Biotechnol Lett; 2007 Jun; 29(6):925-30. PubMed ID: 17356793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for the construction of a mutant library with a predictable occurrence rate using Poisson distribution.
    Seong KM; Park H; Kim SJ; Ha HN; Lee JY; Kim J
    J Microbiol Methods; 2007 Jun; 69(3):442-50. PubMed ID: 17428560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A dominant negative mutant of PMA1 interferes with the folding of the wild type enzyme.
    Eraso P; Mazón MJ; Portillo F
    Traffic; 2010 Jan; 11(1):37-47. PubMed ID: 19929866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput site-directed mutagenesis in ES cells.
    Höllrigl A; Hergovich A; Görzer I; Bader A; Ellersdorfer G; Habegger K; Hammer E; Enzinger S; Capetanaki Y; Weitzer G
    Biochem Biophys Res Commun; 2001 Nov; 289(2):329-36. PubMed ID: 11716476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PCR-mediated one-step deletion of targeted chromosomal regions in haploid Saccharomyces cerevisiae.
    Sugiyama M; Nakazawa T; Murakami K; Sumiya T; Nakamura A; Kaneko Y; Nishizawa M; Harashima S
    Appl Microbiol Biotechnol; 2008 Sep; 80(3):545-53. PubMed ID: 18677473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GAL1-SceI directed site-specific genomic (gsSSG) mutagenesis: a method for precisely targeting point mutations in S. cerevisiae.
    Piccirillo S; Wang HL; Fisher TJ; Honigberg SM
    BMC Biotechnol; 2011 Dec; 11():120. PubMed ID: 22141399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.