BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16922269)

  • 1. Integrated microfluidic devices with enhanced separation performance: application to phosphoproteome analyses of differentiated cell model systems.
    Ghitun M; Bonneil E; Fortier MH; Yin H; Killeen K; Thibault P
    J Sep Sci; 2006 Jul; 29(11):1539-49. PubMed ID: 16922269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated microfluidic device for mass spectrometry-based proteomics and its application to biomarker discovery programs.
    Fortier MH; Bonneil E; Goodley P; Thibault P
    Anal Chem; 2005 Mar; 77(6):1631-40. PubMed ID: 15762566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated system for rapid proteomics analyses using microfluidic devices coupled to nanoelectrospray mass spectrometry.
    Li J; Tremblay TL; Harrison J; Thibault P
    Methods Mol Biol; 2004; 276():305-24. PubMed ID: 15163864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic chip for peptide analysis with an integrated HPLC column, sample enrichment column, and nanoelectrospray tip.
    Yin H; Killeen K; Brennen R; Sobek D; Werlich M; van de Goor T
    Anal Chem; 2005 Jan; 77(2):527-33. PubMed ID: 15649049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of microfluidic devices to proteomics research: identification of trace-level protein digests and affinity capture of target peptides.
    Li J; LeRiche T; Tremblay TL; Wang C; Bonneil E; Harrison DJ; Thibault P
    Mol Cell Proteomics; 2002 Feb; 1(2):157-68. PubMed ID: 12096134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Usefulness of an integrated microfluidic device (HPLC-Chip-MS) to enhance confidence in protein identification by proteomics.
    Hardouin J; Duchateau M; Joubert-Caron R; Caron M
    Rapid Commun Mass Spectrom; 2006; 20(21):3236-44. PubMed ID: 17016832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement in peptide detection for proteomics analyses using NanoLC-MS and high-field asymmetry waveform ion mobility mass spectrometry.
    Venne K; Bonneil E; Eng K; Thibault P
    Anal Chem; 2005 Apr; 77(7):2176-86. PubMed ID: 15801752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplex multidimensional nanoLC-MS system for targeted proteomic analyses.
    Bonneil E; Tessier S; Carrier A; Thibault P
    Electrophoresis; 2005 Dec; 26(24):4575-89. PubMed ID: 16358250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in capillary and microfluidic platforms with MS detection for the analysis of phosphoproteins.
    Lazar IM
    Electrophoresis; 2009 Jan; 30(1):262-75. PubMed ID: 19156662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced sensitivity in proteomics experiments using FAIMS coupled with a hybrid linear ion trap/Orbitrap mass spectrometer.
    Saba J; Bonneil E; Pomiès C; Eng K; Thibault P
    J Proteome Res; 2009 Jul; 8(7):3355-66. PubMed ID: 19469569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the human leukocyte phosphoproteome using a microfluidic reversed-phase-TiO2-reversed-phase high-performance liquid chromatography phosphochip coupled to a quadrupole time-of-flight mass spectrometer.
    Raijmakers R; Kraiczek K; de Jong AP; Mohammed S; Heck AJ
    Anal Chem; 2010 Feb; 82(3):824-32. PubMed ID: 20058876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel multidimensional protein identification technology approach combining protein size exclusion prefractionation, peptide zwitterion-ion hydrophilic interaction chromatography, and nano-ultraperformance RP chromatography/nESI-MS2 for the in-depth analysis of the serum proteome and phosphoproteome: application to clinical sera derived from humans with benign prostate hyperplasia.
    Garbis SD; Roumeliotis TI; Tyritzis SI; Zorpas KM; Pavlakis K; Constantinides CA
    Anal Chem; 2011 Feb; 83(3):708-18. PubMed ID: 21174401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the subcellular phosphoproteome using a novel phosphoproteomic reactor.
    Zhou H; Elisma F; Denis NJ; Wright TG; Tian R; Zhou H; Hou W; Zou H; Figeys D
    J Proteome Res; 2010 Mar; 9(3):1279-88. PubMed ID: 20067319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic liquid chromatography system for proteomic applications and biomarker screening.
    Lazar IM; Trisiripisal P; Sarvaiya HA
    Anal Chem; 2006 Aug; 78(15):5513-24. PubMed ID: 16878890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanowell-mediated multidimensional separations combining nanoLC with SLIM IM-MS for rapid, high-peak-capacity proteomic analyses.
    Dou M; Chouinard CD; Zhu Y; Nagy G; Liyu AV; Ibrahim YM; Smith RD; Kelly RT
    Anal Bioanal Chem; 2019 Aug; 411(21):5363-5372. PubMed ID: 30397757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid capillary/microfluidic system for comprehensive online liquid chromatography-capillary electrophoresis-electrospray ionization-mass spectrometry.
    Mellors JS; Black WA; Chambers AG; Starkey JA; Lacher NA; Ramsey JM
    Anal Chem; 2013 Apr; 85(8):4100-6. PubMed ID: 23477683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic chips for mass spectrometry-based proteomics.
    Lee J; Soper SA; Murray KK
    J Mass Spectrom; 2009 May; 44(5):579-93. PubMed ID: 19373851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the precursor ion exclusion feature of liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis.
    Wang N; Li L
    Anal Chem; 2008 Jun; 80(12):4696-710. PubMed ID: 18479145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative determination of 8-isoprostaglandin F(2α) in human urine using microfluidic chip-based nano-liquid chromatography with on-chip sample enrichment and tandem mass spectrometry.
    Bai HY; Lin SL; Chung YT; Liu TY; Chan SA; Fuh MR
    J Chromatogr A; 2011 Apr; 1218(15):2085-90. PubMed ID: 21081240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of sample preparation and replicate analyses on HeLa Cell phosphoproteome coverage.
    Ham BM; Yang F; Jayachandran H; Jaitly N; Monroe ME; Gritsenko MA; Livesay EA; Zhao R; Purvine SO; Orton D; Adkins JN; Camp DG; Rossie S; Smith RD
    J Proteome Res; 2008 Jun; 7(6):2215-21. PubMed ID: 18412383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.