BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 16922269)

  • 21. Off-line two-dimensional liquid chromatography with maximized sample loading to reversed-phase liquid chromatography-electrospray ionization tandem mass spectrometry for shotgun proteome analysis.
    Wang N; Xie C; Young JB; Li L
    Anal Chem; 2009 Feb; 81(3):1049-60. PubMed ID: 19178338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MALDI-TOF and nESI Orbitrap MS/MS identify orthogonal parts of the phosphoproteome.
    Ruprecht B; Roesli C; Lemeer S; Kuster B
    Proteomics; 2016 May; 16(10):1447-56. PubMed ID: 26990019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advances in coupling microfluidic chips to mass spectrometry.
    Feng X; Liu BF; Li J; Liu X
    Mass Spectrom Rev; 2015; 34(5):535-57. PubMed ID: 24399782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of eight penicillin antibiotics in pharmaceuticals, milk and porcine tissues by nano-liquid chromatography.
    Hsieh SH; Huang HY; Lee S
    J Chromatogr A; 2009 Oct; 1216(43):7186-94. PubMed ID: 19523644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic HPLC-Chip devices with integral channels containing methylstyrenic-based monolithic media.
    Robotti KM; Yin H; Brennen R; Trojer L; Killeen K
    J Sep Sci; 2009 Oct; 32(20):3379-87. PubMed ID: 19777457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Macroporous reversed-phase separation of proteins combined with reversed-phase separation of phosphopeptides and tandem mass spectrometry for profiling the phosphoproteome of MDA-MB-231 cells.
    Ye X; Li L
    Electrophoresis; 2014 Dec; 35(24):3479-86. PubMed ID: 24888630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of a polystyrene microfluidic chip coupled to electrospray ionization mass spectrometry for protein analysis.
    Hu X; Dong Y; He Q; Chen H; Zhu Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 May; 990():96-103. PubMed ID: 25864010
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures.
    Xie J; Miao Y; Shih J; Tai YC; Lee TD
    Anal Chem; 2005 Nov; 77(21):6947-53. PubMed ID: 16255594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly reproducible improved label-free quantitative analysis of cellular phosphoproteome by optimization of LC-MS/MS gradient and analytical column construction.
    Ahsan N; Belmont J; Chen Z; Clifton JG; Salomon AR
    J Proteomics; 2017 Aug; 165():69-74. PubMed ID: 28634120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation techniques hyphenated to electrospray-tandem mass spectrometry in proteomics: capillary electrophoresis versus nanoliquid chromatography.
    Pelzing M; Neusüss C
    Electrophoresis; 2005 Jul; 26(14):2717-28. PubMed ID: 15966011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiplexed two-dimensional liquid chromatography for MALDI and nanoelectrospray ionization mass spectrometry in proteomics.
    Saito H; Oda Y; Sato T; Kuromitsu J; Ishihama Y
    J Proteome Res; 2006 Jul; 5(7):1803-7. PubMed ID: 16823989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic droplet-array liquid-liquid chromatography based on droplet trapping technique.
    Zhu Y; Chen H; Du GS; Fang Q
    Lab Chip; 2012 Nov; 12(21):4350-4. PubMed ID: 22903271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Retention time prediction using the model of liquid chromatography of biomacromolecules at critical conditions in LC-MS phosphopeptide analysis.
    Perlova TY; Goloborodko AA; Margolin Y; Pridatchenko ML; Tarasova IA; Gorshkov AV; Moskovets E; Ivanov AR; Gorshkov MV
    Proteomics; 2010 Oct; 10(19):3458-68. PubMed ID: 20815086
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic devices for high-throughput proteome analyses.
    Chao TC; Hansmeier N
    Proteomics; 2013 Feb; 13(3-4):467-79. PubMed ID: 23135952
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent developments in microfluidic chip-based separation devices coupled to MS for bioanalysis.
    Lin SL; Lin TY; Fuh MR
    Bioanalysis; 2013 Oct; 5(20):2567-80. PubMed ID: 24138628
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multinozzle emitter array chips for small-volume proteomics.
    Mao P; Gomez-Sjoberg R; Wang D
    Anal Chem; 2013 Jan; 85(2):816-9. PubMed ID: 23252432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. iPhos: a toolkit to streamline the alkaline phosphatase-assisted comprehensive LC-MS phosphoproteome investigation.
    Yang TH; Chang HT; Hsiao ES; Sun JL; Wang CC; Wu HY; Liao PC; Wu WS
    BMC Bioinformatics; 2014; 15 Suppl 16(Suppl 16):S10. PubMed ID: 25521246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chip-based nano-LC-MS/MS identification of proteins in complex biological samples using a novel polymer microfluidic device.
    Srbek J; Eickhoff J; Effelsberg U; Kraiczek K; van de Goor T; Coufal P
    J Sep Sci; 2007 Aug; 30(13):2046-52. PubMed ID: 17654622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nano-flow multidimensional liquid chromatography platform integrated with combination of protein and peptide separation for proteome analysis.
    Xia S; Tao D; Yuan H; Zhou Y; Liang Z; Zhang L; Zhang Y
    J Sep Sci; 2012 Jul; 35(14):1764-70. PubMed ID: 22623513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrated solid-phase extraction-capillary liquid chromatography (speLC) interfaced to ESI-MS/MS for fast characterization and quantification of protein and proteomes.
    Falkenby LG; Such-Sanmartín G; Larsen MR; Vorm O; Bache N; Jensen ON
    J Proteome Res; 2014 Dec; 13(12):6169-75. PubMed ID: 25277625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.