These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 16922312)

  • 21. Comment on "Erosion of lizard diversity by climate change and altered thermal niches".
    Clusella-Trullas S; Chown SL
    Science; 2011 Apr; 332(6029):537; author reply 537. PubMed ID: 21527699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change.
    Morin X; Thuiller W
    Ecology; 2009 May; 90(5):1301-13. PubMed ID: 19537550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extinction risks forced by climatic change and intraspecific variation in the thermal physiology of a tropical lizard.
    Pontes-da-Silva E; Magnusson WE; Sinervo B; Caetano GH; Miles DB; Colli GR; Diele-Viegas LM; Fenker J; Santos JC; Werneck FP
    J Therm Biol; 2018 Apr; 73():50-60. PubMed ID: 29549991
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of local rarity and climatic suitability to local extinction and colonization varies with species traits.
    White HJ; Montgomery IW; Lennon JJ
    J Anim Ecol; 2018 Nov; 87(6):1560-1572. PubMed ID: 30007035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Food web structure and interaction strength pave the way for vulnerability to extinction.
    Karlsson P; Jonsson T; Jonsson A
    J Theor Biol; 2007 Nov; 249(1):77-92. PubMed ID: 17727894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating co-extinction threats in terrestrial ecosystems.
    Doherty S; Saltré F; Llewelyn J; Strona G; Williams SE; Bradshaw CJA
    Glob Chang Biol; 2023 Sep; 29(18):5122-5138. PubMed ID: 37386726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Projected impacts of climate and land-use change on the global diversity of birds.
    Jetz W; Wilcove DS; Dobson AP
    PLoS Biol; 2007 Jun; 5(6):e157. PubMed ID: 17550306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.
    Field IC; Meekan MG; Buckworth RC; Bradshaw CJ
    Adv Mar Biol; 2009; 56():275-363. PubMed ID: 19895977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Organism activity levels predict marine invertebrate survival during ancient global change extinctions.
    Clapham ME
    Glob Chang Biol; 2017 Apr; 23(4):1477-1485. PubMed ID: 27570079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How sensitive are temperate tadpoles to climate change? The use of thermal physiology and niche model tools to assess vulnerability.
    Perotti MG; Bonino MF; Ferraro D; Cruz FB
    Zoology (Jena); 2018 Apr; 127():95-105. PubMed ID: 29496379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ecology. Biodiversity and climate change.
    Willis KJ; Bhagwat SA
    Science; 2009 Nov; 326(5954):806-7. PubMed ID: 19892969
    [No Abstract]   [Full Text] [Related]  

  • 32. A framework for debate of assisted migration in an era of climate change.
    McLachlan JS; Hellmann JJ; Schwartz MW
    Conserv Biol; 2007 Apr; 21(2):297-302. PubMed ID: 17391179
    [No Abstract]   [Full Text] [Related]  

  • 33. Elevational distribution and extinction risk in birds.
    White RL; Bennett PM
    PLoS One; 2015; 10(4):e0121849. PubMed ID: 25849620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-third of reef-building corals face elevated extinction risk from climate change and local impacts.
    Carpenter KE; Abrar M; Aeby G; Aronson RB; Banks S; Bruckner A; Chiriboga A; Cortés J; Delbeek JC; Devantier L; Edgar GJ; Edwards AJ; Fenner D; Guzmán HM; Hoeksema BW; Hodgson G; Johan O; Licuanan WY; Livingstone SR; Lovell ER; Moore JA; Obura DO; Ochavillo D; Polidoro BA; Precht WF; Quibilan MC; Reboton C; Richards ZT; Rogers AD; Sanciangco J; Sheppard A; Sheppard C; Smith J; Stuart S; Turak E; Veron JE; Wallace C; Weil E; Wood E
    Science; 2008 Jul; 321(5888):560-3. PubMed ID: 18653892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Projected climate-induced faunal change in the Western Hemisphere.
    Lawler JJ; Shafer SL; White D; Kareiva P; Maurer EP; Blaustein AR; Bartlein PJ
    Ecology; 2009 Mar; 90(3):588-97. PubMed ID: 19341131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure.
    Binzer A; Guill C; Rall BC; Brose U
    Glob Chang Biol; 2016 Jan; 22(1):220-7. PubMed ID: 26365694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conservation ecology: area trumps mobility in fragment bird extinctions.
    Sekercioglu CH
    Curr Biol; 2007 Apr; 17(8):R283-6. PubMed ID: 17437705
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting primate local extinctions within "real-world" forest fragments: a pan-neotropical analysis.
    Benchimol M; Peres CA
    Am J Primatol; 2014 Mar; 76(3):289-302. PubMed ID: 24532182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extinction cascades partially estimate herbivore losses in a complete Lepidoptera--plant food web.
    Pearse IS; Altermatt F
    Ecology; 2013 Aug; 94(8):1785-94. PubMed ID: 24015522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Frog population viability under present and future climate conditions: a Bayesian state-space approach.
    McCaffery R; Solonen A; Crone E
    J Anim Ecol; 2012 Sep; 81(5):978-85. PubMed ID: 22574643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.