BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

387 related articles for article (PubMed ID: 16922317)

  • 1. Microbial community composition and function across an arctic tundra landscape.
    Zak DR; Kling GW
    Ecology; 2006 Jul; 87(7):1659-70. PubMed ID: 16922317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vegetation-associated impacts on arctic tundra bacterial and microeukaryotic communities.
    Shi Y; Xiang X; Shen C; Chu H; Neufeld JD; Walker VK; Grogan P
    Appl Environ Microbiol; 2015 Jan; 81(2):492-501. PubMed ID: 25362064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.
    Christiansen CT; Haugwitz MS; Priemé A; Nielsen CS; Elberling B; Michelsen A; Grogan P; Blok D
    Glob Chang Biol; 2017 Jan; 23(1):406-420. PubMed ID: 27197084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-annual variability of NDVI in response to long-term warming and fertilization in wet sedge and tussock tundra.
    Boelman NT; Stieglitz M; Griffin KL; Shaver GR
    Oecologia; 2005 May; 143(4):588-97. PubMed ID: 15812655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.
    Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G
    Ambio; 2004 Nov; 33(7):448-58. PubMed ID: 15573572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.
    Lee SH; Jang I; Chae N; Choi T; Kang H
    Microb Ecol; 2013 Feb; 65(2):405-14. PubMed ID: 22983497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model.
    Euskirchen ES; Carman TB; McGuire AD
    Glob Chang Biol; 2014 Mar; 20(3):963-78. PubMed ID: 24105949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vascular plant
    Michelsen A; Quarmby C; Sleep D; Jonasson S
    Oecologia; 1998 Jul; 115(3):406-418. PubMed ID: 28308434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories.
    Hobbie SE; Gough L
    Oecologia; 2004 Jun; 140(1):113-24. PubMed ID: 15164284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing dynamic vegetation model parameter uncertainty across Alaskan arctic tundra plant communities.
    Euskirchen ES; Serbin SP; Carman TB; Fraterrigo JM; Genet H; Iversen CM; Salmon V; McGuire AD
    Ecol Appl; 2022 Mar; 32(2):e2499. PubMed ID: 34787932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.
    Morgado LN; Semenova TA; Welker JM; Walker MD; Smets E; Geml J
    Glob Chang Biol; 2015 Feb; 21(2):959-72. PubMed ID: 25156129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organohalide-Respiring Bacteria at the Heart of Anaerobic Metabolism in Arctic Wet Tundra Soils.
    Lipson DA; Raab TK; Pérez Castro S; Powell A
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33187999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast response of fungal and prokaryotic communities to climate change manipulation in two contrasting tundra soils.
    Voříšková J; Elberling B; Priemé A
    Environ Microbiome; 2019 Sep; 14(1):6. PubMed ID: 33902718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metaproteomics reveals functional partitioning and vegetational variation among permafrost-affected Arctic soil bacterial communities.
    Miller SE; Colman AS; Waldbauer JR
    mSystems; 2023 Jun; 8(3):e0123822. PubMed ID: 37272710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils.
    Waldrop MP; Firestone MK
    Microb Ecol; 2006 Oct; 52(3):470-9. PubMed ID: 16909344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems.
    Clemmensen KE; Michelsen A; Jonasson S; Shaver GR
    New Phytol; 2006; 171(2):391-404. PubMed ID: 16866945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Term Warming in Alaska Enlarges the Diazotrophic Community in Deep Soils.
    Feng J; Penton CR; He Z; Van Nostrand JD; Yuan MM; Wu L; Wang C; Qin Y; Shi ZJ; Guo X; Schuur EAG; Luo Y; Bracho R; Konstantinidis KT; Cole JR; Tiedje JM; Yang Y; Zhou J
    mBio; 2019 Feb; 10(1):. PubMed ID: 30808694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils.
    Wallenstein MD; McMahon S; Schimel J
    FEMS Microbiol Ecol; 2007 Feb; 59(2):428-35. PubMed ID: 17313585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term warming alters richness and composition of taxonomic and functional groups of arctic fungi.
    Geml J; Morgado LN; Semenova TA; Welker JM; Walker MD; Smets E
    FEMS Microbiol Ecol; 2015 Aug; 91(8):fiv095. PubMed ID: 26253509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats.
    Eskelinen A; Stark S; Männistö M
    Oecologia; 2009 Aug; 161(1):113-23. PubMed ID: 19452173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.