BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 16922604)

  • 1. Neuroanatomical approaches to the study of insect photoperiodism.
    Shiga S; Numata H
    Photochem Photobiol; 2007; 83(1):76-86. PubMed ID: 16922604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of PER immunoreactive neurons in circadian rhythms and photoperiodism in the blow fly, Protophormia terraenovae.
    Shiga S; Numata H
    J Exp Biol; 2009 Mar; 212(Pt 6):867-77. PubMed ID: 19252004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plausible neural circuitry for photoperiodism in the blow fly, Protophormia terraenovae.
    Shiga S
    Acta Biol Hung; 2012; 63 Suppl 2():36-47. PubMed ID: 22776471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What season is it anyway? Circadian tracking vs. photoperiodic anticipation in insects.
    Bradshaw WE; Holzapfel CM
    J Biol Rhythms; 2010 Jun; 25(3):155-65. PubMed ID: 20484687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering time measurement: the role of circadian 'clock' genes and formal experimentation in insect photoperiodism.
    Saunders DS; Bertossa RC
    J Insect Physiol; 2011 May; 57(5):557-66. PubMed ID: 21295039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of photoperiod on clock gene expression and subcellular distribution of PERIOD in the circadian clock neurons of the blow fly Protophormia terraenovae.
    Muguruma F; Goto SG; Numata H; Shiga S
    Cell Tissue Res; 2010 Jun; 340(3):497-507. PubMed ID: 20396905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insect photoperiodic calendar and circadian clock: independence, cooperation, or unity?
    Koštál V
    J Insect Physiol; 2011 May; 57(5):538-56. PubMed ID: 21029738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptic connections between eyelet photoreceptors and pigment dispersing factor-immunoreactive neurons of the blowfly Protophormia terraenovae.
    Yasuyama K; Okada Y; Hamanaka Y; Shiga S
    J Comp Neurol; 2006 Jan; 494(2):331-44. PubMed ID: 16320242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independence of genetic geographical variation between photoperiodic diapause, circadian eclosion rhythm, and Thr-Gly repeat region of the period gene in Drosophila littoralis.
    Lankinen P; Forsman P
    J Biol Rhythms; 2006 Feb; 21(1):3-12. PubMed ID: 16461980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris.
    Ikeno T; Numata H; Goto SG; Shiga S
    J Exp Biol; 2014 Feb; 217(Pt 3):453-62. PubMed ID: 24198258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different photoreceptor organs are used for photoperiodism in the larval and adult stages of the carabid beetle, Leptocarabus kumagaii.
    Shintani Y; Shiga S; Numata H
    J Exp Biol; 2009 Nov; 212(Pt 22):3651-5. PubMed ID: 19880726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause.
    Emerson KJ; Bradshaw WE; Holzapfel CM
    Trends Genet; 2009 May; 25(5):217-25. PubMed ID: 19375812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Knockouts of positive and negative elements of the circadian clock disrupt photoperiodic diapause induction in the silkworm, Bombyx mori.
    Tobita H; Kiuchi T
    Insect Biochem Mol Biol; 2022 Oct; 149():103842. PubMed ID: 36115518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological and molecular mechanisms underlying photoperiodism in the spider mite: comparisons with insects.
    Goto SG
    J Comp Physiol B; 2016 Dec; 186(8):969-984. PubMed ID: 27424162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression of circadian clock genes in two strains of beetles reveals candidates related to photoperiodic induction of summer diapause.
    Zhu L; Liu W; Tan QQ; Lei CL; Wang XP
    Gene; 2017 Mar; 603():9-14. PubMed ID: 27956169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The circadian timing system in the brain of the fifth larval instar of Rhodnius prolixus (hemiptera).
    Vafopoulou X; Terry KL; Steel CG
    J Comp Neurol; 2010 Apr; 518(8):1264-82. PubMed ID: 20151359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoperiodic plasticity in circadian clock neurons in insects.
    Shiga S
    Front Physiol; 2013; 4():69. PubMed ID: 23986711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparative Study of Circadian Rhythmicity and Photoperiodism in Closely Related Species of Blow Flies: External Coincidence, Maternal Induction, and Diapause at Northern Latitudes.
    Saunders D
    J Biol Rhythms; 2021 Dec; 36(6):532-547. PubMed ID: 34738497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The clock gene period plays an essential role in photoperiodic control of nymphal development in the cricket Modicogryllus siamensis.
    Sakamoto T; Uryu O; Tomioka K
    J Biol Rhythms; 2009 Oct; 24(5):379-90. PubMed ID: 19755583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possible involvement of distinct photoreceptors in the photoperiodic induction of diapause in the flesh fly Sarcophaga similis.
    Goto SG; Numata H
    J Insect Physiol; 2009 May; 55(5):401-7. PubMed ID: 19084533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.