BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 16922694)

  • 1. SSToSS--sequence-structural templates of single-member superfamilies.
    Chakrabarti S; Manohari G; Pugalenthi G; Sowdhamini R
    In Silico Biol; 2006; 6(4):311-9. PubMed ID: 16922694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regions of minimal structural variation among members of protein domain superfamilies: application to remote homology detection and modelling using distant relationships.
    Chakrabarti S; Sowdhamini R
    FEBS Lett; 2004 Jul; 569(1-3):31-6. PubMed ID: 15225604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PASS2: an automated database of protein alignments organised as structural superfamilies.
    Bhaduri A; Pugalenthi G; Sowdhamini R
    BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond the Twilight Zone: automated prediction of structural properties of proteins by recursive neural networks and remote homology information.
    Mooney C; Pollastri G
    Proteins; 2009 Oct; 77(1):181-90. PubMed ID: 19422056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GenDiS: Genomic Distribution of protein structural domain Superfamilies.
    Pugalenthi G; Bhaduri A; Sowdhamini R
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D252-5. PubMed ID: 15608190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural diversity of domain superfamilies in the CATH database.
    Reeves GA; Dallman TJ; Redfern OC; Akpor A; Orengo CA
    J Mol Biol; 2006 Jul; 360(3):725-41. PubMed ID: 16780872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On single and multiple models of protein families for the detection of remote sequence relationships.
    Casbon JA; Saqi MA
    BMC Bioinformatics; 2006 Jan; 7():48. PubMed ID: 16448555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recognition of remotely related structural homologues using sequence profiles of aligned homologous protein structures.
    Namboori S; Srinivasan N; Pandit SB
    In Silico Biol; 2004; 4(4):445-60. PubMed ID: 15506994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MegaMotifBase: a database of structural motifs in protein families and superfamilies.
    Pugalenthi G; Suganthan PN; Sowdhamini R; Chakrabarti S
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D218-21. PubMed ID: 17933773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CORA--topological fingerprints for protein structural families.
    Orengo CA
    Protein Sci; 1999 Apr; 8(4):699-715. PubMed ID: 10211816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein structure mining using a structural alphabet.
    Tyagi M; de Brevern AG; Srinivasan N; Offmann B
    Proteins; 2008 May; 71(2):920-37. PubMed ID: 18004784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Definition of the tempo of sequence diversity across an alignment and automatic identification of sequence motifs: Application to protein homologous families and superfamilies.
    May AC
    Protein Sci; 2002 Dec; 11(12):2825-35. PubMed ID: 12441381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SMpred: a support vector machine approach to identify structural motifs in protein structure without using evolutionary information.
    Pugalenthi G; Kandaswamy KK; Suganthan PN; Sowdhamini R; Martinetz T; Kolatkar PR
    J Biomol Struct Dyn; 2010 Dec; 28(3):405-14. PubMed ID: 20919755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein structure prediction based on sequence similarity.
    Jaroszewski L
    Methods Mol Biol; 2009; 569():129-56. PubMed ID: 19623489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SMoS: a database of structural motifs of protein superfamilies.
    Chakrabarti S; Venkatramanan K; Sowdhamini R
    Protein Eng; 2003 Nov; 16(11):791-3. PubMed ID: 14631067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blast sampling for structural and functional analyses.
    Friedrich A; Ripp R; Garnier N; Bettler E; Deléage G; Poch O; Moulinier L
    BMC Bioinformatics; 2007 Feb; 8():62. PubMed ID: 17319945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative view at comprehensive information resources on three-dimensional structures of biological macro-molecules.
    Hühne R; Koch FT; Sühnel J
    Brief Funct Genomic Proteomic; 2007 Sep; 6(3):220-39. PubMed ID: 17956938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PSSARD (2.0): a database server for making flexible queries relating amino acid sequences to main-chain secondary structure conformations for proteins of known three-dimensional structure and certain useful applications.
    Sridhar S; Babu AV; Guruprasad K
    Int J Biol Macromol; 2007 Jun; 41(1):109-13. PubMed ID: 17150250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discarding functional residues from the substitution table improves predictions of active sites within three-dimensional structures.
    Gong S; Blundell TL
    PLoS Comput Biol; 2008 Oct; 4(10):e1000179. PubMed ID: 18833291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of related proteins by iterative template refinement (ITR).
    Yi TM; Lander ES
    Protein Sci; 1994 Aug; 3(8):1315-28. PubMed ID: 7987226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.