BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16923158)

  • 1. Copper-dependent co-internalization of the prion protein and glypican-1.
    Cheng F; Lindqvist J; Haigh CL; Brown DR; Mani K
    J Neurochem; 2006 Sep; 98(5):1445-57. PubMed ID: 16923158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prion, amyloid beta-derived Cu(II) ions, or free Zn(II) ions support S-nitroso-dependent autocleavage of glypican-1 heparan sulfate.
    Mani K; Cheng F; Havsmark B; Jönsson M; Belting M; Fransson LA
    J Biol Chem; 2003 Oct; 278(40):38956-65. PubMed ID: 12732622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of glypican-1 autoprocessing in scrapie infection.
    Löfgren K; Cheng F; Fransson LA; Bedecs K; Mani K
    Eur J Neurosci; 2008 Sep; 28(5):964-72. PubMed ID: 18717736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The heparan sulfate-specific epitope 10E4 is NO-sensitive and partly inaccessible in glypican-1.
    Mani K; Cheng F; Sandgren S; Van Den Born J; Havsmark B; Ding K; Fransson LA
    Glycobiology; 2004 Jul; 14(7):599-607. PubMed ID: 15044385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defective nitric oxide-dependent, deaminative cleavage of glypican-1 heparan sulfate in Niemann-Pick C1 fibroblasts.
    Mani K; Cheng F; Fransson LA
    Glycobiology; 2006 Aug; 16(8):711-8. PubMed ID: 16645004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of glycosylphosphatidylinositol-linked ceruloplasmin in the copper/zinc-nitric oxide-dependent degradation of glypican-1 heparan sulfate in rat C6 glioma cells.
    Mani K; Cheng F; Havsmark B; David S; Fransson LA
    J Biol Chem; 2004 Mar; 279(13):12918-23. PubMed ID: 14707133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The amyloid precursor protein (APP) of Alzheimer disease and its paralog, APLP2, modulate the Cu/Zn-Nitric Oxide-catalyzed degradation of glypican-1 heparan sulfate in vivo.
    Cappai R; Cheng F; Ciccotosto GD; Needham BE; Masters CL; Multhaup G; Fransson LA; Mani K
    J Biol Chem; 2005 Apr; 280(14):13913-20. PubMed ID: 15677459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes.
    Cheng F; Mani K; van den Born J; Ding K; Belting M; Fransson LA
    J Biol Chem; 2002 Nov; 277(46):44431-9. PubMed ID: 12226079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper-dependent autocleavage of glypican-1 heparan sulfate by nitric oxide derived from intrinsic nitrosothiols.
    Ding K; Mani K; Cheng F; Belting M; Fransson LA
    J Biol Chem; 2002 Sep; 277(36):33353-60. PubMed ID: 12084716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome b561, copper, β-cleaved amyloid precursor protein and niemann-pick C1 protein are involved in ascorbate-induced release and membrane penetration of heparan sulfate from endosomal S-nitrosylated glypican-1.
    Cheng F; Fransson LÅ; Mani K
    Exp Cell Res; 2017 Nov; 360(2):171-179. PubMed ID: 28893506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glypican-1 facilitates prion conversion in lipid rafts.
    Hooper NM
    J Neurochem; 2011 Mar; 116(5):721-5. PubMed ID: 20681952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and processing of glypican during differentiation of skeletal muscle cells.
    Brandan E; Carey DJ; Larraín J; Melo F; Campos A
    Eur J Cell Biol; 1996 Oct; 71(2):170-6. PubMed ID: 8905294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-Nitrosylation of secreted recombinant human glypican-1.
    Svensson G; Mani K
    Glycoconj J; 2009 Dec; 26(9):1247-57. PubMed ID: 19479373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel aspects of glypican glycobiology.
    Fransson LA; Belting M; Cheng F; Jönsson M; Mani K; Sandgren S
    Cell Mol Life Sci; 2004 May; 61(9):1016-24. PubMed ID: 15112050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The glypican family of heparan sulfate proteoglycans: major cell-surface proteoglycans of the developing nervous system.
    Lander AD; Stipp CS; Ivins JK
    Perspect Dev Neurobiol; 1996; 3(4):347-58. PubMed ID: 9117265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction.
    Cheng F; Bourseau-Guilmain E; Belting M; Fransson LÅ; Mani K
    Glycobiology; 2016 Jun; 26(6):623-34. PubMed ID: 26791445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparan sulfate degradation products can associate with oxidized proteins and proteasomes.
    Mani K; Cheng F; Fransson LA
    J Biol Chem; 2007 Jul; 282(30):21934-44. PubMed ID: 17540770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-conserved, S-nitrosylated cysteines in glypican-1 react with N-unsubstituted glucosamines in heparan sulfate and catalyze deaminative cleavage.
    Cheng F; Svensson G; Fransson LÅ; Mani K
    Glycobiology; 2012 Nov; 22(11):1480-6. PubMed ID: 22801553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and thermal unfolding of glypican-1: protective effect of heparan sulfate against heat-induced irreversible aggregation.
    Svensson G; Linse S; Mani K
    Biochemistry; 2009 Oct; 48(42):9994-10004. PubMed ID: 19775117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid beta induces cellular relocalization and production of agrin and glypican-1.
    Timmer NM; van Horssen J; Otte-Holler I; Wilhelmus MM; David G; van Beers J; de Waal RM; Verbeek MM
    Brain Res; 2009 Mar; 1260():38-46. PubMed ID: 19166823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.