These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 169235)
1. The purine nucleotide cycle. Control of phosphofructokinase and glycolytic oscillations in muscle extracts. Tornheim K; Lowenstein JM J Biol Chem; 1975 Aug; 250(16):6304-14. PubMed ID: 169235 [TBL] [Abstract][Full Text] [Related]
2. The purine nucleotide cycle. IV. Interactions with oscillations of the glycolytic pathway in muscle extracts. Tornheim K; Lowenstein JM J Biol Chem; 1974 May; 249(10):3241-7. PubMed ID: 4275340 [No Abstract] [Full Text] [Related]
3. Oscillations of the glycolytic pathway and the purine nucleotide cycle. Tornheim K J Theor Biol; 1979 Aug; 79(4):491-541. PubMed ID: 159983 [No Abstract] [Full Text] [Related]
4. Control of phosphofructokinase from rat skeletal muscle. Effects of fructose diphosphate, AMP, ATP, and citrate. Tornheim K; Lowenstein JM J Biol Chem; 1976 Dec; 251(23):7322-8. PubMed ID: 12161 [TBL] [Abstract][Full Text] [Related]
5. Modulation by citrate of glycolytic oscillations in skeletal muscle extracts. Tornheim K; Andrés V; Schultz V J Biol Chem; 1991 Aug; 266(24):15675-8. PubMed ID: 1831450 [TBL] [Abstract][Full Text] [Related]
6. Fructose 2,6-bisphosphate and glycolytic oscillations in skeletal muscle extracts. Tornheim K J Biol Chem; 1988 Feb; 263(6):2619-24. PubMed ID: 2963814 [TBL] [Abstract][Full Text] [Related]
7. Glycolytic intermediates and adenosine phosphates in rat liver at high altitude (3,800 m). Cipriano LF; Pace N Am J Physiol; 1973 Aug; 225(2):393-8. PubMed ID: 4269147 [No Abstract] [Full Text] [Related]
8. The effect of ethionine on the energy-producing metabolism in the rat pancreas. II. Alterations of tissue levels of adenine nucleotides, pyridine nucleotides, and glycolytic metabolites. Goebell H Horm Metab Res; 1974 Jan; 6(1):44-9. PubMed ID: 4150487 [No Abstract] [Full Text] [Related]
9. Effects of hypoxia of 10-45 seconds duration on energy metabolism in the cerebral cortex of unanesthetized and anesthetized rats. Norberg K; Quistorff B; Siesjö BK Acta Physiol Scand; 1975 Nov; 95(3):301-10. PubMed ID: 127509 [TBL] [Abstract][Full Text] [Related]
10. Study on the regulatory role of fructose-1,6-diphosphate in the formation of AMP in rat skeletal muscle. A mechanism for synchronization of glycolysis and the purine nucleotide cycle. Ogawa H; Shiraki H; Nakagawa H Biochem Biophys Res Commun; 1976 Jan; 68(2):524-8. PubMed ID: 1252243 [No Abstract] [Full Text] [Related]
11. Kinetics of metabolic pathways. Transient response of the glycolytic system after phosphofructokinase reaction to ADP input. Riol-Cimas JM; Meléndez-Hevia E Int J Biochem; 1988; 20(1):29-33. PubMed ID: 2963774 [TBL] [Abstract][Full Text] [Related]
12. Interaction of ADP and fructose-2,6-bisphosphate with phosphofructokinase-1 from yeast. Nissler K; Schellenberger W; Otto A; Hofmann E Biomed Biochim Acta; 1985; 44(7-8):1065-70. PubMed ID: 2935144 [TBL] [Abstract][Full Text] [Related]
13. The effects of ammonium, inorganic phosphate and potassium ions on the activity of phosphofructokinases from muscle and nervous tissues of vertebrates and invertebrates. Sugden PH; Newsholme EA Biochem J; 1975 Jul; 150(1):113-22. PubMed ID: 128356 [TBL] [Abstract][Full Text] [Related]
14. Properties of phosphofructokinase from the mucosa of rat jejunum and their relation to the lack of Pasteur effect. Tejwani GA; Ramaiah A Biochem J; 1971 Nov; 125(2):507-14. PubMed ID: 4259410 [TBL] [Abstract][Full Text] [Related]
15. The purine-nucleotide cycle. Comparison of the levels of citric acid cycle intermediates with the operation of the purine nucleotide cycle in rat skeletal muscle during exercise and recovery from exercise. Aragón JJ; Lowenstein JM Eur J Biochem; 1980 Sep; 110(2):371-7. PubMed ID: 7439166 [No Abstract] [Full Text] [Related]
16. A model for glycolytic oscillations based on skeletal muscle phosphofructokinase kinetics. Smolen P J Theor Biol; 1995 May; 174(2):137-48. PubMed ID: 7643610 [TBL] [Abstract][Full Text] [Related]
17. Control of energy metabolism in fish white muscle. Driedzic WR; Hochachka PW Am J Physiol; 1976 Mar; 230(3):579-82. PubMed ID: 131493 [TBL] [Abstract][Full Text] [Related]
18. Gluconeogenesis in isolated hepatic parenchymal cells. VII. Effects of monobutyryl cyclic adenosine monophosphate on gluconeogenic intermediates, phosphofructokinase, and fructose diphosphatase. Veneziale CM; Swenson RP Mayo Clin Proc; 1975 May; 50(5):271-8. PubMed ID: 165334 [TBL] [Abstract][Full Text] [Related]
19. Mechanisms activating glycolysis in the brain in arterial hypoxia. Bachelard HS; Lewis LD; Pontén U; Siesjö BK J Neurochem; 1974 Mar; 22(3):395-401. PubMed ID: 4364341 [No Abstract] [Full Text] [Related]
20. Cerebral metabolism in hypoxic hypoxia. I. Pattern of activation of glycolysis: a re-evaluation. Norberg K; Siesjö BK Brain Res; 1975 Mar; 86(1):31-44. PubMed ID: 234773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]