These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 16923591)

  • 1. Pesticide modelling for a small catchment using SWAT-2000.
    Kannan N; White SM; Worrall F; Whelan MJ
    J Environ Sci Health B; 2006; 41(7):1049-70. PubMed ID: 16923591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pesticides in stream water within an agricultural catchment in southern Sweden, 1990-1996.
    Kreuger J
    Sci Total Environ; 1998 May; 216(3):227-51. PubMed ID: 9646531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling through-soil transport of phosphorus to surface waters from livestock agriculture at the field and catchment scale.
    McGechan MB; Lewis DR; Hooda PS
    Sci Total Environ; 2005 May; 344(1-3):185-99. PubMed ID: 15907517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of pesticide concentrations found in rivers in the UK.
    Brown CD; Bellamy PH; Dubus IG
    Pest Manag Sci; 2002 Apr; 58(4):363-73. PubMed ID: 11975184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods.
    Boithias L; Sauvage S; Taghavi L; Merlina G; Probst JL; Pérez JM
    J Hazard Mater; 2011 Nov; 196():210-9. PubMed ID: 21945686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Agricultural inputs of pesticide residues to stream and pond sediments in a small catchment in southern Sweden.
    Kreuger J; Peterson M; Lundgren E
    Bull Environ Contam Toxicol; 1999 Jan; 62(1):55-62. PubMed ID: 9870990
    [No Abstract]   [Full Text] [Related]  

  • 7. Spatial and Temporal Variability in Pesticide Exposure Downstream of a Heavily Irrigated Cropping Area: Application of Different Monitoring Techniques.
    O'Brien D; Lewis S; Davis A; Gallen C; Smith R; Turner R; Warne M; Turner S; Caswell S; Mueller JF; Brodie J
    J Agric Food Chem; 2016 May; 64(20):3975-89. PubMed ID: 26755130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pesticide distribution in an agricultural environment in Argentina.
    Loewy RM; Monza LB; Kirs VE; Savini MC
    J Environ Sci Health B; 2011; 46(8):662-70. PubMed ID: 21806463
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting diffuse-source transfers of surfactants to surface waters using SWAT.
    Kannan N; White SM; Whelan MJ
    Chemosphere; 2007 Jan; 66(7):1336-45. PubMed ID: 16908048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-hazardous pesticide concentrations in surface waters: An integrated approach simulating application thresholds and resulting farm income effects.
    Bannwarth MA; Grovermann C; Schreinemachers P; Ingwersen J; Lamers M; Berger T; Streck T
    J Environ Manage; 2016 Jan; 165():298-312. PubMed ID: 26431614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley watershed of California.
    Luo Y; Zhang X; Liu X; Ficklin D; Zhang M
    Environ Pollut; 2008 Dec; 156(3):1171-81. PubMed ID: 18457909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multipesticide residue assessment of agricultural soil and water in major farming areas in Benguet, Philippines.
    Del Prado Lu JL
    Arch Environ Contam Toxicol; 2010 Aug; 59(2):175-81. PubMed ID: 20162264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential use of the STICS crop model and of the MACRO pesticide fate model to simulate pesticides leaching in cropping systems.
    Lammoglia SK; Moeys J; Barriuso E; Larsbo M; Marín-Benito JM; Justes E; Alletto L; Ubertosi M; Nicolardot B; Munier-Jolain N; Mamy L
    Environ Sci Pollut Res Int; 2017 Mar; 24(8):6895-6909. PubMed ID: 27194012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An investigation into the inputs controlling predictions from a diffuse phosphorus loss model for the UK; the Phosphorus Indicators Tool (PIT).
    Liu S; Brazier R; Heathwaite L
    Sci Total Environ; 2005 May; 344(1-3):211-23. PubMed ID: 15907519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pesticide fate modeling in soils with the crop model STICS: Feasibility for assessment of agricultural practices.
    Queyrel W; Habets F; Blanchoud H; Ripoche D; Launay M
    Sci Total Environ; 2016 Jan; 542(Pt A):787-802. PubMed ID: 26556743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil and Water Assessment Tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds.
    Winchell MF; Peranginangin N; Srinivasan R; Chen W
    Integr Environ Assess Manag; 2018 May; 14(3):358-368. PubMed ID: 29193759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pesticide assessment of the banana sector in an Ecuadorian watershed.
    Matamoros D; Vanrolleghem PA
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2001; 66(2b):863-72. PubMed ID: 12425113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pesticide risk assessment in a lagoon ecosystem. Part I: exposure assessment.
    Villa S; Finizio A; Vighi M
    Environ Toxicol Chem; 2003 Apr; 22(4):928-35. PubMed ID: 12685731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Pesticide pollution of groundwater and drinking water by the processes of artificial groundwater enrichment or coastal filtration: underrated sources of contamination].
    Mathys W
    Zentralbl Hyg Umweltmed; 1994 Dec; 196(4):338-59. PubMed ID: 7748439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.