BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 16923797)

  • 1. Conserved distances between vertebrate highly conserved elements.
    Sun H; Skogerbø G; Chen R
    Hum Mol Genet; 2006 Oct; 15(19):2911-22. PubMed ID: 16923797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of human chromosome 21 conserved nongenic sequences (CNGs) with the mouse and dog genomes shows that their selective constraint is independent of their genic environment.
    Dermitzakis ET; Kirkness E; Schwarz S; Birney E; Reymond A; Antonarakis SE
    Genome Res; 2004 May; 14(5):852-9. PubMed ID: 15078857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cracking the genome's second code: enhancer detection by combined phylogenetic footprinting and transgenic fish and frog embryos.
    Allende ML; Manzanares M; Tena JJ; Feijóo CG; Gómez-Skarmeta JL
    Methods; 2006 Jul; 39(3):212-9. PubMed ID: 16806968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A functional survey of the enhancer activity of conserved non-coding sequences from vertebrate Iroquois cluster gene deserts.
    de la Calle-Mustienes E; Feijóo CG; Manzanares M; Tena JJ; Rodríguez-Seguel E; Letizia A; Allende ML; Gómez-Skarmeta JL
    Genome Res; 2005 Aug; 15(8):1061-72. PubMed ID: 16024824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic regions with distinct genomic distance conservation in vertebrate genomes.
    Sun H; Skogerbø G; Zheng X; Liu W; Li Y
    BMC Genomics; 2009 Mar; 10():133. PubMed ID: 19323843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome.
    Washietl S; Hofacker IL; Lukasser M; Hüttenhofer A; Stadler PF
    Nat Biotechnol; 2005 Nov; 23(11):1383-90. PubMed ID: 16273071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-scale appearance of ultraconserved elements in tetrapod genomes and slowdown of the molecular clock.
    Stephen S; Pheasant M; Makunin IV; Mattick JS
    Mol Biol Evol; 2008 Feb; 25(2):402-8. PubMed ID: 18056681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural relationships between highly conserved elements and genes in vertebrate genomes.
    Sun H; Skogerbø G; Wang Z; Liu W; Li Y
    PLoS One; 2008; 3(11):e3727. PubMed ID: 19008958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in sequence and organization of splicing regulatory elements in vertebrate genes.
    Yeo G; Hoon S; Venkatesh B; Burge CB
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15700-5. PubMed ID: 15505203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the gene-dense major histocompatibility complex class III region and its comparison to mouse.
    Xie T; Rowen L; Aguado B; Ahearn ME; Madan A; Qin S; Campbell RD; Hood L
    Genome Res; 2003 Dec; 13(12):2621-36. PubMed ID: 14656967
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved synteny of mammalian imprinted genes in chicken, frog, and fish genomes.
    Dünzinger U; Haaf T; Zechner U
    Cytogenet Genome Res; 2007; 117(1-4):78-85. PubMed ID: 17675847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-Müllerian hormone (AMH/AMH) in the European sea bass: its gene structure, regulatory elements, and the expression of alternatively-spliced isoforms.
    Halm S; Rocha A; Miura T; Prat F; Zanuy S
    Gene; 2007 Feb; 388(1-2):148-58. PubMed ID: 17157448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire.
    Eckhart L; Ballaun C; Hermann M; VandeBerg JL; Sipos W; Uthman A; Fischer H; Tschachler E
    Mol Biol Evol; 2008 May; 25(5):831-41. PubMed ID: 18281271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The role of conserved sequences in the regulatory elements of the Antp-like homeobox-containing genes of vertebrates].
    Spirov AV
    Zh Evol Biokhim Fiziol; 1996; 32(5):556-68. PubMed ID: 9092235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of potential GDF6 regulatory elements by multispecies sequence comparisons and identification of a skeletal joint enhancer.
    Portnoy ME; McDermott KJ; Antonellis A; Margulies EH; Prasad AB; ; Kingsley DM; Green ED; Mortlock DP
    Genomics; 2005 Sep; 86(3):295-305. PubMed ID: 15979840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transposable elements in gene regulation and in the evolution of vertebrate genomes.
    Bourque G
    Curr Opin Genet Dev; 2009 Dec; 19(6):607-12. PubMed ID: 19914058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of conserved secondary structures and their function in transcriptional regulation networks.
    Xie HB; Irwin DM; Zhang YP
    BMC Genomics; 2008 Nov; 9():520. PubMed ID: 18976501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolving genomic metaphors: a new look at the language of DNA.
    Avise JC
    Science; 2001 Oct; 294(5540):86-7. PubMed ID: 11588247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomics. Charting a genome's hills and valleys.
    Pennisi E
    Science; 2002 May; 296(5573):1601-3. PubMed ID: 12040163
    [No Abstract]   [Full Text] [Related]  

  • 20. Genomics. Vertebrate genomes compared.
    Hedges SB; Kumar S
    Science; 2002 Aug; 297(5585):1283-5. PubMed ID: 12193771
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.