These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 16924110)

  • 41. Lipid rafts in lymphocyte activation.
    Pizzo P; Viola A
    Microbes Infect; 2004 Jun; 6(7):686-92. PubMed ID: 15158776
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Spatial differences in active caspase-8 defines its role in T-cell activation versus cell death.
    Koenig A; Russell JQ; Rodgers WA; Budd RC
    Cell Death Differ; 2008 Nov; 15(11):1701-11. PubMed ID: 18617900
    [TBL] [Abstract][Full Text] [Related]  

  • 43. T-cell activation and the dynamic world of rafts.
    Viola A; Lanzavecchia A
    APMIS; 1999 Jul; 107(7):615-23. PubMed ID: 10440056
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion.
    Hu Y; Kim JH; He K; Wan Q; Kim J; Flach M; Kirchhausen T; Vortkamp A; Winau F
    J Exp Med; 2016 Nov; 213(12):2759-2772. PubMed ID: 27810927
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Artificial cell surface constructs for studying receptor-ligand contributions to lymphocyte activation.
    Curtsinger J; Deeths MJ; Pease P; Mescher MF
    J Immunol Methods; 1997 Nov; 209(1):47-57. PubMed ID: 9448033
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Antibody mimicry, receptors and clinical applications.
    Horenstein AL; Chillemi A; Quarona V; Zito A; Mariani V; Faini AC; Morandi F; Schiavoni I; Ausiello CM; Malavasi F
    Hum Antibodies; 2017; 25(3-4):75-85. PubMed ID: 28035914
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fluorosomes: a convenient new reagent to detect and block multivalent and complex receptor-ligand interactions.
    Kueng HJ; Manta C; Haiderer D; Leb VM; Schmetterer KG; Neunkirchner A; Byrne RA; Scheinecker C; Steinberger P; Seed B; Pickl WF
    FASEB J; 2010 May; 24(5):1572-82. PubMed ID: 20056716
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lipid rafts and T-lymphocyte function: implications for autoimmunity.
    Kabouridis PS; Jury EC
    FEBS Lett; 2008 Nov; 582(27):3711-8. PubMed ID: 18930053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lipid rafts in T cell signalling and disease.
    Jury EC; Flores-Borja F; Kabouridis PS
    Semin Cell Dev Biol; 2007 Oct; 18(5):608-15. PubMed ID: 17890113
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using live FRET imaging to reveal early protein-protein interactions during T cell activation.
    Zal T; Gascoigne NR
    Curr Opin Immunol; 2004 Oct; 16(5):674-83. PubMed ID: 15818893
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation the potential of recombinant anti-CD3 nanobody on immunomodulatory function.
    Moradi-Kalbolandi S; Sharifi-K A; Darvishi B; Majidzadeh-A K; Jalili N; Sadeghi S; Mosayebzadeh M; Sanati H; Salehi M; Farahmand L
    Mol Immunol; 2020 Feb; 118():174-181. PubMed ID: 31884389
    [TBL] [Abstract][Full Text] [Related]  

  • 52. T-cell antigen receptor triggering and lipid rafts: a matter of space and time scales. Talking Point on the involvement of lipid rafts in T-cell activation.
    He HT; Marguet D
    EMBO Rep; 2008 Jun; 9(6):525-30. PubMed ID: 18516087
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Are rafts involved in T-cell receptor signalling? Introduction to the Talking Point on the involvement of lipid rafts in T-cell activation.
    de Wet B; Harder T
    EMBO Rep; 2008 Jun; 9(6):523-4. PubMed ID: 18516086
    [No Abstract]   [Full Text] [Related]  

  • 54. The importance of Ca
    Diercks BP
    Biochim Biophys Acta Mol Cell Res; 2024 Jun; 1871(5):119710. PubMed ID: 38522726
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Floating the raft hypothesis: lipid rafts play a role in immune cell activation.
    Cherukuri A; Dykstra M; Pierce SK
    Immunity; 2001 Jun; 14(6):657-60. PubMed ID: 11420035
    [No Abstract]   [Full Text] [Related]  

  • 56. Lymphocyte stimulation by cell wall constituents.
    Emmrich F
    Rheumatol Int; 1989; 9(3-5):229-32. PubMed ID: 2692131
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Plasticity of T cell memory responses to viruses.
    Selin LK; Welsh RM
    Immunity; 2004 Jan; 20(1):5-16. PubMed ID: 14738760
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lymphocytic choriomeningitis virus. IV. Electron microscopic investigation of the virion.
    Müller G; Bruns M; Martínez Peralta L; Lehmann-Grube F
    Arch Virol; 1983; 75(4):229-42. PubMed ID: 6838378
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Scrutinizing calcium flux oscillations in T lymphocytes to deduce the strength of stimulus.
    Christo SN; Diener KR; Nordon RE; Brown MP; Griesser HJ; Vasilev K; Christo FC; Hayball JD
    Sci Rep; 2015 Jan; 5():7760. PubMed ID: 25585590
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Janus particles as artificial antigen-presenting cells for T cell activation.
    Chen B; Jia Y; Gao Y; Sanchez L; Anthony SM; Yu Y
    ACS Appl Mater Interfaces; 2014; 6(21):18435-9. PubMed ID: 25343426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.