These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
381 related articles for article (PubMed ID: 16924481)
1. Hyperinsulinism in mice with heterozygous loss of K(ATP) channels. Remedi MS; Rocheleau JV; Tong A; Patton BL; McDaniel ML; Piston DW; Koster JC; Nichols CG Diabetologia; 2006 Oct; 49(10):2368-78. PubMed ID: 16924481 [TBL] [Abstract][Full Text] [Related]
2. Carriers of an inactivating beta-cell ATP-sensitive K(+) channel mutation have normal glucose tolerance and insulin sensitivity and appropriate insulin secretion. Huopio H; Vauhkonen I; Komulainen J; Niskanen L; Otonkoski T; Laakso M Diabetes Care; 2002 Jan; 25(1):101-6. PubMed ID: 11772909 [TBL] [Abstract][Full Text] [Related]
3. beta-cell hyperexcitability: from hyperinsulinism to diabetes. Nichols CG; Koster JC; Remedi MS Diabetes Obes Metab; 2007 Nov; 9 Suppl 2():81-8. PubMed ID: 17919182 [TBL] [Abstract][Full Text] [Related]
4. Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Gloyn AL; Siddiqui J; Ellard S Hum Mutat; 2006 Mar; 27(3):220-31. PubMed ID: 16416420 [TBL] [Abstract][Full Text] [Related]
5. Crosstalk between membrane potential and cytosolic Ca2+ concentration in beta cells from Sur1-/- mice. Haspel D; Krippeit-Drews P; Aguilar-Bryan L; Bryan J; Drews G; Düfer M Diabetologia; 2005 May; 48(5):913-21. PubMed ID: 15830184 [TBL] [Abstract][Full Text] [Related]
6. Congenital hyperinsulinism associated ABCC8 mutations that cause defective trafficking of ATP-sensitive K+ channels: identification and rescue. Yan FF; Lin YW; MacMullen C; Ganguly A; Stanley CA; Shyng SL Diabetes; 2007 Sep; 56(9):2339-48. PubMed ID: 17575084 [TBL] [Abstract][Full Text] [Related]
7. Genotype-phenotype correlations in children with congenital hyperinsulinism due to recessive mutations of the adenosine triphosphate-sensitive potassium channel genes. Henwood MJ; Kelly A; Macmullen C; Bhatia P; Ganguly A; Thornton PS; Stanley CA J Clin Endocrinol Metab; 2005 Feb; 90(2):789-94. PubMed ID: 15562009 [TBL] [Abstract][Full Text] [Related]
8. Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Cartier EA; Conti LR; Vandenberg CA; Shyng SL Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2882-7. PubMed ID: 11226335 [TBL] [Abstract][Full Text] [Related]
9. Molecular mechanisms of neonatal hyperinsulinism. Giurgea I; Bellanné-Chantelot C; Ribeiro M; Hubert L; Sempoux C; Robert JJ; Blankenstein O; Hussain K; Brunelle F; Nihoul-Fékété C; Rahier J; Jaubert F; de Lonlay P Horm Res; 2006; 66(6):289-96. PubMed ID: 17003566 [TBL] [Abstract][Full Text] [Related]
10. ABCC8 (SUR1) and KCNJ11 (KIR6.2) mutations in persistent hyperinsulinemic hypoglycemia of infancy and evaluation of different therapeutic measures. Darendeliler F; Fournet JC; Baş F; Junien C; Gross MS; Bundak R; Saka N; Günöz H J Pediatr Endocrinol Metab; 2002; 15(7):993-1000. PubMed ID: 12199344 [TBL] [Abstract][Full Text] [Related]
11. Destabilization of ATP-sensitive potassium channel activity by novel KCNJ11 mutations identified in congenital hyperinsulinism. Lin YW; Bushman JD; Yan FF; Haidar S; MacMullen C; Ganguly A; Stanley CA; Shyng SL J Biol Chem; 2008 Apr; 283(14):9146-56. PubMed ID: 18250167 [TBL] [Abstract][Full Text] [Related]
12. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Flanagan SE; Clauin S; Bellanné-Chantelot C; de Lonlay P; Harries LW; Gloyn AL; Ellard S Hum Mutat; 2009 Feb; 30(2):170-80. PubMed ID: 18767144 [TBL] [Abstract][Full Text] [Related]
14. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Seino S; Iwanaga T; Nagashima K; Miki T Diabetes; 2000 Mar; 49(3):311-8. PubMed ID: 10868950 [TBL] [Abstract][Full Text] [Related]
15. Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine. Doliba NM; Qin W; Vatamaniuk MZ; Li C; Zelent D; Najafi H; Buettger CW; Collins HW; Carr RD; Magnuson MA; Matschinsky FM Am J Physiol Endocrinol Metab; 2004 May; 286(5):E834-43. PubMed ID: 14736703 [TBL] [Abstract][Full Text] [Related]
16. Impact of Sur1 gene inactivation on the morphology of mouse pancreatic endocrine tissue. Marhfour I; Moulin P; Marchandise J; Rahier J; Sempoux C; Guiot Y Cell Tissue Res; 2009 Mar; 335(3):505-15. PubMed ID: 19142666 [TBL] [Abstract][Full Text] [Related]
17. Regulation of glucagon secretion at low glucose concentrations: evidence for adenosine triphosphate-sensitive potassium channel involvement. Muñoz A; Hu M; Hussain K; Bryan J; Aguilar-Bryan L; Rajan AS Endocrinology; 2005 Dec; 146(12):5514-21. PubMed ID: 16123162 [TBL] [Abstract][Full Text] [Related]
18. Sulfonylurea receptor 1 mutations that cause opposite insulin secretion defects with chemical chaperone exposure. Pratt EB; Yan FF; Gay JW; Stanley CA; Shyng SL J Biol Chem; 2009 Mar; 284(12):7951-9. PubMed ID: 19151370 [TBL] [Abstract][Full Text] [Related]
19. The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells. Miki T; Nagashima K; Seino S J Mol Endocrinol; 1999 Apr; 22(2):113-23. PubMed ID: 10194514 [TBL] [Abstract][Full Text] [Related]
20. Clinical and molecular characterization of a dominant form of congenital hyperinsulinism caused by a mutation in the high-affinity sulfonylurea receptor. Thornton PS; MacMullen C; Ganguly A; Ruchelli E; Steinkrauss L; Crane A; Aguilar-Bryan L; Stanley CA Diabetes; 2003 Sep; 52(9):2403-10. PubMed ID: 12941782 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]