BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 16924921)

  • 1. Susceptibility of Penicillium expansum spores to sodium hypochlorite, electrolyzed oxidizing water, and chlorine dioxide solutions modified with nonionic surfactants.
    Okull DO; Demirci A; Rosenberger D; LaBorde LF
    J Food Prot; 2006 Aug; 69(8):1944-8. PubMed ID: 16924921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of sanitizing treatments against Penicillium expansum inoculated on six varieties of apples.
    Salomão BC; Aragão GM; Churey JJ; Worobo RW
    J Food Prot; 2008 Mar; 71(3):643-7. PubMed ID: 18389716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of chlorine dioxide (ClO
    Zhang X; Fu M; Chen Q
    J Sci Food Agric; 2019 Mar; 99(4):1961-1968. PubMed ID: 30270445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivation of Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples by neutral electrolyzed water.
    Torlak E
    Int J Food Microbiol; 2014 Aug; 185():69-72. PubMed ID: 24929685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of chlorine, chlorine dioxide, and a peroxyacetic acid-based sanitizer for effectiveness in killing Bacillus cereus and Bacillus thuringiensis spores in suspensions, on the surface of stainless steel, and on apples.
    Kreske AC; Ryu JH; Beuchat LR
    J Food Prot; 2006 Aug; 69(8):1892-903. PubMed ID: 16924915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Destruction of Alicyclobacillus acidoterrestris spores in apple juice on stainless steel surfaces by chemical disinfectants.
    Podolak R; Elliott PH; Taylor BJ; Khurana A; Black DG
    J Food Prot; 2009 Mar; 72(3):510-4. PubMed ID: 19343938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of overhead spray-applied sanitizers for the reduction of Salmonella on tomato surfaces.
    Chang AS; Schneider KR
    J Food Sci; 2012 Jan; 77(1):M65-9. PubMed ID: 22133048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigation of Alicyclobacillus spp. spores on food contact surfaces with aqueous chlorine dioxide and hypochlorite.
    Friedrich LM; Goodrich-Schneider R; Parish ME; Danyluk MD
    Food Microbiol; 2009 Dec; 26(8):936-41. PubMed ID: 19835785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Penicillium expansum resistance to thermal and chlorine treatments.
    Salomão BC; Churey JJ; Aragão GM; Worobo RW
    J Food Prot; 2009 Dec; 72(12):2618-22. PubMed ID: 20003750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of Salmonella enterica on the surface of eggshells by sequential treatment with aqueous chlorine dioxide and drying.
    Choi S; Park S; Kim Y; Kim BS; Beuchat LR; Hoikyung K; Ryu JH
    Int J Food Microbiol; 2015 Oct; 210():84-7. PubMed ID: 26114591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lethality of chlorine, chlorine dioxide, and a commercial fruit and vegetable sanitizer to vegetative cells and spores of Bacillus cereus and spores of Bacillus thuringiensis.
    Beuchat LR; Pettigrew CA; Tremblay ME; Roselle BJ; Scouten AJ
    J Food Prot; 2004 Aug; 67(8):1702-8. PubMed ID: 15330537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms.
    Wen G; Xu X; Huang T; Zhu H; Ma J
    Water Res; 2017 Nov; 125():132-140. PubMed ID: 28843153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis.
    Calvo J; Calvente V; de Orellano ME; Benuzzi D; Sanz de Tosetti MI
    Int J Food Microbiol; 2007 Feb; 113(3):251-7. PubMed ID: 17007950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Bacillus cereus Spores on Red Chili Peppers Using a Combined Treatment of Aqueous Chlorine Dioxide and Hot-Air Drying.
    Kim S; Lee H; Ryu JH; Kim H
    J Food Sci; 2017 Aug; 82(8):1892-1897. PubMed ID: 28631818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antimicrobial effect of electrolyzed oxidizing water against Escherichia coli O157:H7 and Listeria monocytogenes on fresh strawberries (Fragaria x ananassa).
    Udompijitkul P; Daeschel MA; Zhao Y
    J Food Sci; 2007 Nov; 72(9):M397-406. PubMed ID: 18034734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of chlorine dioxide to control Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples.
    Lee SY; Gray PM; Dougherty RH; Kang DH
    Int J Food Microbiol; 2004 Apr; 92(2):121-7. PubMed ID: 15109789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using aqueous chlorine dioxide to prevent contamination of tomatoes with Salmonella enterica and erwinia carotovora during fruit washing.
    Pao S; Kelsey DF; Khalid MF; Ettinger MR
    J Food Prot; 2007 Mar; 70(3):629-34. PubMed ID: 17388051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of conidia from three Penicillium spp. isolated from fruit juices by conventional and alternative mild preservation technologies and disinfection treatments.
    Nierop Groot M; Abee T; van Bokhorst-van de Veen H
    Food Microbiol; 2019 Aug; 81():108-114. PubMed ID: 30910081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficacy of acidic electrolyzed water for microbial decontamination of cucumbers and strawberries.
    Koseki S; Yoshida K; Isobe S; Itoh K
    J Food Prot; 2004 Jun; 67(6):1247-51. PubMed ID: 15222559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of Salmonella enterica on alfalfa seeds with acidic electrolyzed oxidizing water and enhanced uptake of acidic electrolyzed oxidizing water into seeds by gas exchange.
    Stan SD; Daeschel MA
    J Food Prot; 2003 Nov; 66(11):2017-22. PubMed ID: 14627277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.