These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 16925429)
1. Periodic density functional theory study of propane oxidative dehydrogenation over V2O5(001) surface. Fu H; Liu ZP; Li ZH; Wang WN; Fan KN J Am Chem Soc; 2006 Aug; 128(34):11114-23. PubMed ID: 16925429 [TBL] [Abstract][Full Text] [Related]
2. Oxidative dehydrogenation of propane over a VO2-exchanged MCM-22 zeolite: a DFT study. Wannakao S; Boekfa B; Khongpracha P; Probst M; Limtrakul J Chemphyschem; 2010 Nov; 11(16):3432-8. PubMed ID: 20973120 [TBL] [Abstract][Full Text] [Related]
3. Quantum chemical study of mechanisms for oxidative dehydrogenation of propane on vanadium oxide. Redfern PC; Zapol P; Sternberg M; Adiga SP; Zygmunt SA; Curtiss LA J Phys Chem B; 2006 Apr; 110(16):8363-71. PubMed ID: 16623521 [TBL] [Abstract][Full Text] [Related]
4. Oxidative dehydrogenation of propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: structural characterization and catalytic function. Yang S; Iglesia E; Bell AT J Phys Chem B; 2005 May; 109(18):8987-9000. PubMed ID: 16852071 [TBL] [Abstract][Full Text] [Related]
5. Transient and steady state investigation of selective and non-selective reaction pathways in the oxidative dehydrogenation of propane over supported vanadia catalysts. Kondratenko EV; Steinfeldt N; Baerns M Phys Chem Chem Phys; 2006 Apr; 8(13):1624-33. PubMed ID: 16633647 [TBL] [Abstract][Full Text] [Related]
6. DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. Yang ML; Zhu YA; Fan C; Sui ZJ; Chen D; Zhou XG Phys Chem Chem Phys; 2011 Feb; 13(8):3257-67. PubMed ID: 21253636 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, structure, and catalytic reactivity of isolated V5+-Oxo species prepared by sublimation of VOCl3 onto H-ZSM5. Lacheen HS; Iglesia E J Phys Chem B; 2006 Mar; 110(11):5462-72. PubMed ID: 16539484 [TBL] [Abstract][Full Text] [Related]
8. [Study on performance of Ni3 V2O8 catalyst and analysis of X-ray photoelectron spectroscopy]. Xu AJ; Zhaorigetu B; Jia ML; Lin Q Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2134-8. PubMed ID: 18306814 [TBL] [Abstract][Full Text] [Related]
9. Correlation between the Properties of Surface Lattice Oxygen on NiO and Its Reactivity and Selectivity towards the Oxidative Dehydrogenation of Propane. Tan C; Liu H; Qin Y; Li L; Wang H; Zhu X; Ge Q Chemphyschem; 2023 Feb; 24(4):e202200539. PubMed ID: 36223257 [TBL] [Abstract][Full Text] [Related]
10. A theoretical study on the mechanism of C(2)H(4) oxidation over a neutral V(3)O(8) cluster. Ma YP; Ding XL; Zhao YX; He SG Chemphyschem; 2010 Jun; 11(8):1718-25. PubMed ID: 20213786 [TBL] [Abstract][Full Text] [Related]
11. Oxidative dehydrogenation of hydrocarbons by V3O7(+) compared to other vanadium oxide species. Rozanska X; Sauer J J Phys Chem A; 2009 Oct; 113(43):11586-94. PubMed ID: 19438201 [TBL] [Abstract][Full Text] [Related]
12. Propene oxidation on V4O11- cluster: reaction dynamics to acrolein. Li HB; Tian SX; Yang J J Phys Chem A; 2010 Jun; 114(23):6542-9. PubMed ID: 20499886 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms of initial propane activation on molybdenum oxides: a density functional theory study. Fu G; Xu X; Lu X; Wan H J Phys Chem B; 2005 Apr; 109(13):6416-21. PubMed ID: 16851714 [TBL] [Abstract][Full Text] [Related]
14. Site-dependent catalytic activity of graphene oxides towards oxidative dehydrogenation of propane. Tang S; Cao Z Phys Chem Chem Phys; 2012 Dec; 14(48):16558-65. PubMed ID: 22801590 [TBL] [Abstract][Full Text] [Related]
15. In situ UV-visible spectroscopic measurements of kinetic parameters and active sites for catalytic oxidation of alkanes on vanadium oxides. Argyle MD; Chen K; Iglesia E; Bell AT J Phys Chem B; 2005 Feb; 109(6):2414-20. PubMed ID: 16851236 [TBL] [Abstract][Full Text] [Related]
16. Reduction of the (001) surface of gamma-V2O5 compared to alpha-V2O5. Ganduglia-Pirovano MV; Sauer J J Phys Chem B; 2005 Jan; 109(1):374-80. PubMed ID: 16851025 [TBL] [Abstract][Full Text] [Related]
17. Theoretical study of adsorption of O((3)P) and H(2)O on the rutile TiO(2)(110) surface. Qu ZW; Kroes GJ J Phys Chem B; 2006 Nov; 110(46):23306-14. PubMed ID: 17107180 [TBL] [Abstract][Full Text] [Related]
18. DFT analysis of the reaction paths of formaldehyde decomposition on silver. Montoya A; Haynes BS J Phys Chem A; 2009 Jul; 113(28):8125-31. PubMed ID: 19586058 [TBL] [Abstract][Full Text] [Related]
19. Catalysts for monooxygenations made from polyoxometalate: an iron(V)-oxo derivative of the Lindqvist anion. Derat E; Kumar D; Neumann R; Shaik S Inorg Chem; 2006 Oct; 45(21):8655-63. PubMed ID: 17029376 [TBL] [Abstract][Full Text] [Related]
20. Competitive paths for methanol decomposition on Pt(111). Greeley J; Mavrikakis M J Am Chem Soc; 2004 Mar; 126(12):3910-9. PubMed ID: 15038745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]