These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 16925429)
21. Quantitative determination of the speciation of surface vanadium oxides and their catalytic activity. Tian H; Ross EI; Wachs IE J Phys Chem B; 2006 May; 110(19):9593-600. PubMed ID: 16686507 [TBL] [Abstract][Full Text] [Related]
22. Anomalous reactivity of supported V2O5 nanoparticles for propane oxidative dehydrogenation: influence of the vanadium oxide precursor. Carrero CA; Keturakis CJ; Orrego A; Schomäcker R; Wachs IE Dalton Trans; 2013 Sep; 42(35):12644-53. PubMed ID: 23652298 [TBL] [Abstract][Full Text] [Related]
23. Study on the role of SBA-15 in the oxidative dehydrogenation of n-butane over vanadia catalyst using density functional theory. Ha NN; Huyen ND; Cam le M J Mol Model; 2013 Aug; 19(8):3233-43. PubMed ID: 23649349 [TBL] [Abstract][Full Text] [Related]
24. Vanadium oxides on aluminum oxide supports. 2. Structure, vibrational properties, and reducibility of V2O5 clusters on alpha-Al2O3(0001). Brázdová V; Ganduglia-Pirovano MV; Sauer J J Phys Chem B; 2005 Dec; 109(49):23532-42. PubMed ID: 16375328 [TBL] [Abstract][Full Text] [Related]
25. Water-gas-shift reaction on molybdenum carbide surfaces: essential role of the oxycarbide. Liu P; Rodriguez JA J Phys Chem B; 2006 Oct; 110(39):19418-25. PubMed ID: 17004800 [TBL] [Abstract][Full Text] [Related]
26. Comparison of the reactivity of bis(mu-oxo)Cu(II)Cu(III) and Cu(III)Cu(III) species to methane. Shiota Y; Yoshizawa K Inorg Chem; 2009 Feb; 48(3):838-45. PubMed ID: 19113938 [TBL] [Abstract][Full Text] [Related]
27. In Silico Design of Highly Selective Mo-V-Te-Nb-O Mixed Metal Oxide Catalysts for Ammoxidation and Oxidative Dehydrogenation of Propane and Ethane. Cheng MJ; Goddard WA J Am Chem Soc; 2015 Oct; 137(41):13224-7. PubMed ID: 26423704 [TBL] [Abstract][Full Text] [Related]
28. Dynamics of the interaction of vapor-deposited copper with alkanethiolate monolayers: bond insertion, complexation, and penetration pathways. Nagy G; Walker AV J Phys Chem B; 2006 Jun; 110(25):12543-54. PubMed ID: 16800584 [TBL] [Abstract][Full Text] [Related]
29. The role of lattice oxygen in the oxidative dehydrogenation of ethane on alumina-supported vanadium oxide. Dinse A; Schomäcker R; Bell AT Phys Chem Chem Phys; 2009 Aug; 11(29):6119-24. PubMed ID: 19606321 [TBL] [Abstract][Full Text] [Related]
30. Effect of pre-covered oxygen on the dehydrogenation reactions over copper surface: a density functional theory study. Tao SX; Wang GC; Bu XH J Phys Chem B; 2006 Dec; 110(51):26045-54. PubMed ID: 17181256 [TBL] [Abstract][Full Text] [Related]
31. In situ UV-vis-NIR diffuse reflectance and Raman spectroscopy and catalytic activity studies of propane oxidative dehydrogenation over supported CrO3/ZrO2 catalysts. Malleswara Rao TV; Deo G; Jehng JM; Wachs IE Langmuir; 2004 Aug; 20(17):7159-65. PubMed ID: 15301500 [TBL] [Abstract][Full Text] [Related]
32. C=C bond cleavage on neutral VO3(V2O5)n clusters. Dong F; Heinbuch S; Xie Y; Bernstein ER; Rocca JJ; Wang ZC; Ding XL; He SG J Am Chem Soc; 2009 Jan; 131(3):1057-66. PubMed ID: 19119810 [TBL] [Abstract][Full Text] [Related]
33. Coadsorption of CO and NO on the Cu(2)O(111) surface: A periodic density functional theory study. Sun BZ; Chen WK; Xu YJ J Chem Phys; 2009 Nov; 131(17):174503. PubMed ID: 19895021 [TBL] [Abstract][Full Text] [Related]
34. Nature, density, and catalytic role of exposed species on dispersed VOx/CrOx/Al2O3 catalysts. Yang S; Iglesia E; Bell AT J Phys Chem B; 2006 Feb; 110(6):2732-9. PubMed ID: 16471878 [TBL] [Abstract][Full Text] [Related]
35. Monoiron hydrogenase catalysis: hydrogen activation with the formation of a dihydrogen, Fe-H(delta-)...H(delta+)-O, bond and methenyl-H4MPT+ triggered hydride transfer. Yang X; Hall MB J Am Chem Soc; 2009 Aug; 131(31):10901-8. PubMed ID: 19722671 [TBL] [Abstract][Full Text] [Related]
36. The high-valent iron-oxo species of polyoxometalate, if it can be made, will be a highly potent catalyst for C-H hydroxylation and double-bond epoxidation. Kumar D; Derat E; Khenkin AM; Neumann R; Shaik S J Am Chem Soc; 2005 Dec; 127(50):17712-8. PubMed ID: 16351100 [TBL] [Abstract][Full Text] [Related]
37. Deep Potential Molecular Dynamics Study of Propane Oxidative Dehydrogenation. Liu Z; Lu AH; Wang D J Phys Chem A; 2024 Mar; 128(9):1656-1664. PubMed ID: 38394031 [TBL] [Abstract][Full Text] [Related]
38. Density functional characterization of adsorption and decomposition of 1-propanethiol on the Ga-rich GaAs (001) surface. Tang S; Cao Z J Phys Chem A; 2009 May; 113(19):5685-90. PubMed ID: 19419226 [TBL] [Abstract][Full Text] [Related]
39. In Situ Generated Boron Peroxo as Mild Oxidant in Propane Oxidative Dehydrogenation Revealed by Density Functional Theory Study. Liu Y; Liu Z; Lu WD; Wang D; Lu AH J Phys Chem Lett; 2022 Dec; 13(50):11729-11735. PubMed ID: 36512686 [TBL] [Abstract][Full Text] [Related]
40. A reflection absorption infrared spectroscopy and density-functional theory investigation of methanol dehydrogenation on Rh(111)V alloy surfaces. Koch HP; Krenn G; Bako I; Schennach R J Chem Phys; 2005 Jun; 122(24):244720. PubMed ID: 16035806 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]