These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 16925555)

  • 1. Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis.
    Traoré DA; El Ghazouani A; Ilango S; Dupuy J; Jacquamet L; Ferrer JL; Caux-Thang C; Duarte V; Latour JM
    Mol Microbiol; 2006 Sep; 61(5):1211-9. PubMed ID: 16925555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation.
    Lee JW; Helmann JD
    Nature; 2006 Mar; 440(7082):363-7. PubMed ID: 16541078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of active site residues essential for sensing of organic hydroperoxides by Bacillus subtilis OhrR.
    Soonsanga S; Fuangthong M; Helmann JD
    J Bacteriol; 2007 Oct; 189(19):7069-76. PubMed ID: 17660290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical characterization of the structural Zn2+ site in the Bacillus subtilis peroxide sensor PerR.
    Lee JW; Helmann JD
    J Biol Chem; 2006 Aug; 281(33):23567-78. PubMed ID: 16766519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of the active form of PerR: insights into the metal-induced activation of PerR and Fur proteins for DNA binding.
    Jacquamet L; Traoré DA; Ferrer JL; Proux O; Testemale D; Hazemann JL; Nazarenko E; El Ghazouani A; Caux-Thang C; Duarte V; Latour JM
    Mol Microbiol; 2009 Jul; 73(1):20-31. PubMed ID: 19508285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox sensing and histidine oxidation: no longer PerR-fect strangers.
    Moye-Rowley WS
    Nat Chem Biol; 2006 May; 2(5):234-5. PubMed ID: 16619021
    [No Abstract]   [Full Text] [Related]  

  • 7. PerR vs OhrR: selective peroxide sensing in Bacillus subtilis.
    Duarte V; Latour JM
    Mol Biosyst; 2010 Feb; 6(2):316-23. PubMed ID: 20094649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function of the arginine repressor-operator complex from Bacillus subtilis.
    Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE
    J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural analysis of B. subtilis CcpA effector binding site.
    Chaptal V; Gueguen-Chaignon V; Poncet S; Lecampion C; Meyer P; Deutscher J; Galinier A; Nessler S; Moréra S
    Proteins; 2006 Aug; 64(3):814-6. PubMed ID: 16755587
    [No Abstract]   [Full Text] [Related]  

  • 10. Structure and functional properties of the Bacillus subtilis transcriptional repressor Rex.
    Wang E; Bauer MC; Rogstam A; Linse S; Logan DT; von Wachenfeldt C
    Mol Microbiol; 2008 Jul; 69(2):466-78. PubMed ID: 18485070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of GerE, the ultimate transcriptional regulator of spore formation in Bacillus subtilis.
    Ducros VM; Lewis RJ; Verma CS; Dodson EJ; Leonard G; Turkenburg JP; Murshudov GN; Wilkinson AJ; Brannigan JA
    J Mol Biol; 2001 Mar; 306(4):759-71. PubMed ID: 11243786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family.
    Hong M; Fuangthong M; Helmann JD; Brennan RG
    Mol Cell; 2005 Oct; 20(1):131-41. PubMed ID: 16209951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A ZnS(4) structural zinc site in the Helicobacter pylori ferric uptake regulator.
    Vitale S; Fauquant C; Lascoux D; Schauer K; Saint-Pierre C; Michaud-Soret I
    Biochemistry; 2009 Jun; 48(24):5582-91. PubMed ID: 19419176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A phospho-sugar binding domain homologous to NagB enzymes regulates the activity of the central glycolytic genes repressor.
    Doan T; Martin L; Zorrilla S; Chaix D; Aymerich S; Labesse G; Declerck N
    Proteins; 2008 Jun; 71(4):2038-50. PubMed ID: 18186488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the Rrf2 repressor family--the structure of CymR, the global cysteine regulator of Bacillus subtilis.
    Shepard W; Soutourina O; Courtois E; England P; Haouz A; Martin-Verstraete I
    FEBS J; 2011 Aug; 278(15):2689-701. PubMed ID: 21624051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied.
    Pohl E; Holmes RK; Hol WG
    J Mol Biol; 1999 Jan; 285(3):1145-56. PubMed ID: 9887269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimer stabilization upon activation of the transcriptional antiterminator LicT.
    Declerck N; Dutartre H; Receveur V; Dubois V; Royer C; Aymerich S; van Tilbeurgh H
    J Mol Biol; 2001 Dec; 314(4):671-81. PubMed ID: 11733988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-repressor induced order and biotin repressor dimerization: a case for divergent followed by convergent evolution.
    Wood ZA; Weaver LH; Brown PH; Beckett D; Matthews BW
    J Mol Biol; 2006 Mar; 357(2):509-23. PubMed ID: 16438984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response regulator YycF essential for bacterial growth: X-ray crystal structure of the DNA-binding domain and its PhoB-like DNA recognition motif.
    Okajima T; Doi A; Okada A; Gotoh Y; Tanizawa K; Utsumi R
    FEBS Lett; 2008 Oct; 582(23-24):3434-8. PubMed ID: 18789936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of peroxide stress regulator from Streptococcus pyogenes provides functional insights into the mechanism of oxidative stress sensing.
    Makthal N; Rastegari S; Sanson M; Ma Z; Olsen RJ; Helmann JD; Musser JM; Kumaraswami M
    J Biol Chem; 2013 Jun; 288(25):18311-24. PubMed ID: 23645680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.