These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 16925921)
21. Is there an infection risk when playing drums contaminated with Bacillus anthracis? Bennett AM; Pottage T; Parks SR J Appl Microbiol; 2016 Sep; 121(3):840-5. PubMed ID: 27348508 [TBL] [Abstract][Full Text] [Related]
22. Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. Tims TB; Lim DV J Microbiol Methods; 2004 Oct; 59(1):127-30. PubMed ID: 15325759 [TBL] [Abstract][Full Text] [Related]
23. Natural dissemination of Bacillus anthracis spores in northern Canada. Dragon DC; Bader DE; Mitchell J; Woollen N Appl Environ Microbiol; 2005 Mar; 71(3):1610-5. PubMed ID: 15746366 [TBL] [Abstract][Full Text] [Related]
24. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores. Edmonds J; Lindquist HD; Sabol J; Martinez K; Shadomy S; Cymet T; Emanuel P PLoS One; 2016; 11(4):e0152225. PubMed ID: 27123934 [TBL] [Abstract][Full Text] [Related]
25. Comparison of noninvasive sampling sites for early detection of Bacillus anthracis spores from rhesus monkeys after aerosol exposure. Hail AS; Rossi CA; Ludwig GV; Ivins BE; Tammariello RF; Henchal EA Mil Med; 1999 Dec; 164(12):833-7. PubMed ID: 10628152 [TBL] [Abstract][Full Text] [Related]
26. Selective detection of 1000 B. anthracis spores within 15 minutes using a peptide functionalized SERS assay. Farquharson S; Shende C; Smith W; Huang H; Inscore F; Sengupta A; Sperry J; Sickler T; Prugh A; Guicheteau J Analyst; 2014 Dec; 139(24):6366-70. PubMed ID: 25263740 [TBL] [Abstract][Full Text] [Related]
27. Rapid chemical digestion of small acid-soluble spore proteins for analysis of Bacillus spores. Swatkoski S; Russell SC; Edwards N; Fenselau C Anal Chem; 2006 Jan; 78(1):181-8. PubMed ID: 16383326 [TBL] [Abstract][Full Text] [Related]
28. RAZOR EX Anthrax Air Detection System for detection of Bacillus anthracis spores from aerosol collection samples: collaborative study. Hadfield T; Ryan V; Spaulding UK; Clemens KM; Ota IM; Brunelle SL J AOAC Int; 2013; 96(2):392-8. PubMed ID: 23767365 [TBL] [Abstract][Full Text] [Related]
29. Rapid, high-throughput, culture-based PCR methods to analyze samples for viable spores of Bacillus anthracis and its surrogates. Kane SR; Létant SE; Murphy GA; Alfaro TM; Krauter PW; Mahnke R; Legler TC; Raber E J Microbiol Methods; 2009 Mar; 76(3):278-84. PubMed ID: 19141303 [TBL] [Abstract][Full Text] [Related]
30. Culturability of Bacillus spores on aerosol collection filters exposed to airborne combustion products of Al, Mg, and B·Ti. Adhikari A; Yermakov M; Indugula R; Reponen T; Driks A; Grinshpun SA Environ Res; 2016 May; 147():212-7. PubMed ID: 26914458 [TBL] [Abstract][Full Text] [Related]
31. Unsupported conclusions on the Bacillus anthracis spores. Mereish KA Appl Environ Microbiol; 2007 Aug; 73(15):5074. PubMed ID: 17660313 [No Abstract] [Full Text] [Related]
32. Evaluation of five commercial nucleic acid extraction kits for their ability to inactivate Bacillus anthracis spores and comparison of DNA yields from spores and spiked environmental samples. Dauphin LA; Moser BD; Bowen MD J Microbiol Methods; 2009 Jan; 76(1):30-7. PubMed ID: 18824041 [TBL] [Abstract][Full Text] [Related]
33. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. Zhang X; Young MA; Lyandres O; Van Duyne RP J Am Chem Soc; 2005 Mar; 127(12):4484-9. PubMed ID: 15783231 [TBL] [Abstract][Full Text] [Related]
34. Re-aerosolization of Bacillus thuringiensis spores from concrete and turf. Bishop AH; O'Sullivan CM; Lane A; Butler Ellis MC; Sellors WJ Lett Appl Microbiol; 2017 May; 64(5):364-369. PubMed ID: 28256003 [TBL] [Abstract][Full Text] [Related]
35. Difference between the spore sizes of Bacillus anthracis and other Bacillus species. Carrera M; Zandomeni RO; Fitzgibbon J; Sagripanti JL J Appl Microbiol; 2007 Feb; 102(2):303-12. PubMed ID: 17241334 [TBL] [Abstract][Full Text] [Related]
36. Surface sampling of spores in dry-deposition aerosols. Edmonds JM; Collett PJ; Valdes ER; Skowronski EW; Pellar GJ; Emanuel PA Appl Environ Microbiol; 2009 Jan; 75(1):39-44. PubMed ID: 18997021 [TBL] [Abstract][Full Text] [Related]
37. Concentration, detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy. He L; D Deen B; Pagel AH; Diez-Gonzalez F; Labuza TP Analyst; 2013 Mar; 138(6):1657-9. PubMed ID: 23386216 [TBL] [Abstract][Full Text] [Related]
38. Anthrax letters in an open office environment: effects of selected CDC response guidelines on personal exposure and building contamination. Kournikakis B; Martinez KF; McCleery RE; Shadomy SV; Ramos G J Occup Environ Hyg; 2011 Feb; 8(2):113-22. PubMed ID: 21253984 [TBL] [Abstract][Full Text] [Related]
39. Determination of the efficacy of two building decontamination strategies by surface sampling with culture and quantitative PCR analysis. Buttner MP; Cruz P; Stetzenbach LD; Klima-Comba AK; Stevens VL; Cronin TD Appl Environ Microbiol; 2004 Aug; 70(8):4740-7. PubMed ID: 15294810 [TBL] [Abstract][Full Text] [Related]