These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
53 related articles for article (PubMed ID: 16926510)
1. Dietary S-allyl-L-cysteine reduces mortality with decreased incidence of stroke and behavioral changes in stroke-prone spontaneously hypertensive rats. Kim JM; Chang N; Kim WK; Chun HS Biosci Biotechnol Biochem; 2006 Aug; 70(8):1969-71. PubMed ID: 16926510 [TBL] [Abstract][Full Text] [Related]
2. Cardiopulmonary responses of Wistar Kyoto, spontaneously hypertensive, and stroke-prone spontaneously hypertensive rats to particulate matter (PM) exposure. Wallenborn JG; Schladweiler MC; Nyska A; Johnson JA; Thomas R; Jaskot RH; Richards JH; Ledbetter AD; Kodavanti UP J Toxicol Environ Health A; 2007 Nov; 70(22):1912-22. PubMed ID: 17966062 [TBL] [Abstract][Full Text] [Related]
3. Pharmacological studies on a new dihydrothienopyridine calcium antagonist. 4th communication: prophylactic and therapeutic effects of S-(+)-methyl-4,7-dihydro-3-isobutyl-6-methyl-4-(3-nitrophenyl)thieno[2, 3- b]pyridine-5-carboxylate in stroke-prone spontaneously hypertensive rats. Ueda M; Masui M; Kawakami M; Matsunaga K; Gemba T; Ninomiya M; Nakano A; Torii M; Adachi I; Ito H Arzneimittelforschung; 1993 Dec; 43(12):1291-303. PubMed ID: 8141816 [TBL] [Abstract][Full Text] [Related]
4. Na+/K+-ATPase alpha isoforms expression in stroke-prone spontaneously hypertensive rat heart ventricles: effect of salt loading and lacidipine treatment. Quintas LE; Noël F; Wibo M Eur J Pharmacol; 2007 Jun; 565(1-3):151-7. PubMed ID: 17451677 [TBL] [Abstract][Full Text] [Related]
5. The effects of dietary sodium on hypertension and stroke development in female stroke-prone spontaneously hypertensive rats. Chen J; Delaney KH; Kwiecien JM; Lee RM Exp Mol Pathol; 1997; 64(3):173-83. PubMed ID: 9439482 [TBL] [Abstract][Full Text] [Related]
6. Antihypertensive effect of biotin in stroke-prone spontaneously hypertensive rats. Watanabe-Kamiyama M; Kamiyama S; Horiuchi K; Ohinata K; Shirakawa H; Furukawa Y; Komai M Br J Nutr; 2008 Apr; 99(4):756-63. PubMed ID: 18179728 [TBL] [Abstract][Full Text] [Related]
7. Choice of diet impacts the incidence of stroke-related symptoms in the spontaneously hypertensive stroke-prone rat model. Slemmer JE; Shaughnessy KS; Scanlan AP; Sweeney MI; Gottschall-Pass KT Can J Physiol Pharmacol; 2012 Feb; 90(2):243-8. PubMed ID: 22316284 [TBL] [Abstract][Full Text] [Related]
8. Mineralocorticoid receptors/epithelial Na(+) channels in the choroid plexus are involved in hypertensive mechanisms in stroke-prone spontaneously hypertensive rats. Nakano M; Hirooka Y; Matsukawa R; Ito K; Sunagawa K Hypertens Res; 2013 Mar; 36(3):277-84. PubMed ID: 23096235 [TBL] [Abstract][Full Text] [Related]
9. Effects of S-1-propenylcysteine, a sulfur compound in aged garlic extract, on blood pressure and peripheral circulation in spontaneously hypertensive rats. Ushijima M; Takashima M; Kunimura K; Kodera Y; Morihara N; Tamura K J Pharm Pharmacol; 2018 Apr; 70(4):559-565. PubMed ID: 29380376 [TBL] [Abstract][Full Text] [Related]
10. Effects of dietary docosahexaenoic acid on survival time and stroke-related behavior in stroke-prone spontaneously hypertensive rats. Minami M; Kimura S; Endo T; Hamaue N; Hirafuji M; Monma Y; Togashi H; Yoshioka M; Saito H; Watanabe S; Kobayashi T; Okuyama H Gen Pharmacol; 1997 Sep; 29(3):401-7. PubMed ID: 9378247 [TBL] [Abstract][Full Text] [Related]
11. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Kishi T; Hirooka Y; Kimura Y; Ito K; Shimokawa H; Takeshita A Circulation; 2004 May; 109(19):2357-62. PubMed ID: 15117836 [TBL] [Abstract][Full Text] [Related]
12. Olmesartan reduces oxidative stress in the brain of stroke-prone spontaneously hypertensive rats assessed by an in vivo ESR method. Araki S; Hirooka Y; Kishi T; Yasukawa K; Utsumi H; Sunagawa K Hypertens Res; 2009 Dec; 32(12):1091-6. PubMed ID: 19763130 [TBL] [Abstract][Full Text] [Related]
13. Pathological alterations of astrocytes in stroke-prone spontaneously hypertensive rats under ischemic conditions. Yamagata K Neurochem Int; 2012 Jan; 60(1):91-8. PubMed ID: 22100568 [TBL] [Abstract][Full Text] [Related]
14. Protective effect of antioxidant ebselen (PZ51) on the cerebral cortex of stroke-prone spontaneously hypertensive rats. Sui H; Wang W; Wang PH; Liu LS Hypertens Res; 2005 Mar; 28(3):249-54. PubMed ID: 16097369 [TBL] [Abstract][Full Text] [Related]
15. [Behavioral and pharmacological studies of juvenile stroke-prone spontaneously hypertensive rats as an animal model of attention-deficit/hyperactivity disorder]. Ueno K; Togashi H; Yoshioka M Nihon Shinkei Seishin Yakurigaku Zasshi; 2003 Feb; 23(1):47-55. PubMed ID: 12690641 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of phytosterolemia in stroke-prone spontaneously hypertensive and WKY rats. Ikeda I; Nakagiri H; Sugano M; Ohara S; Hamada T; Nonaka M; Imaizumi K Metabolism; 2001 Nov; 50(11):1361-8. PubMed ID: 11699058 [TBL] [Abstract][Full Text] [Related]
18. The role of bradykinin B1 receptor on cardiac remodeling in stroke-prone spontaneously hypertensive rats (SHR-SP). Moniwa N; Agata J; Hagiwara M; Ura N; Shimamoto K Biol Chem; 2006 Feb; 387(2):203-9. PubMed ID: 16497153 [TBL] [Abstract][Full Text] [Related]
19. Neuronal vulnerability of stroke-prone spontaneously hypertensive rats to ischemia and its prevention with antioxidants such as vitamin E. Yamagata K; Tagami M; Yamori Y Neuroscience; 2010 Sep; 170(1):1-7. PubMed ID: 20633610 [TBL] [Abstract][Full Text] [Related]
20. Renoprotective effects of rosiglitazone in stroke-prone spontaneously hypertensive rats. Choi BS; Yang HJ; Ahn KO; Lim SW; Kim SH; Kim JY; Li C; Kim YS; Kim J; Bang BK; Yang CW Kidney Blood Press Res; 2007; 30(4):212-23. PubMed ID: 17587863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]