These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 16926868)

  • 1. Combined laser calorimetry and photothermal technique for absorption measurement of optical coatings.
    Li B; Blaschke H; Ristau D
    Appl Opt; 2006 Aug; 45(23):5827-31. PubMed ID: 16926868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsed top-hat beam thermal-lens measurement for ultraviolet dielectric coatings.
    Li B; Martin S; Welsch E
    Opt Lett; 1999 Oct; 24(20):1398-400. PubMed ID: 18079814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photothermal detuning for absorption measurement of optical coatings.
    Hao H; Li B
    Appl Opt; 2008 Jan; 47(2):188-94. PubMed ID: 18188200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the absorption uniformity of optical thin films based on the photothermal detuning technique.
    Hao H; Zhou A; Rao M
    Appl Opt; 2012 Oct; 51(28):6844-7. PubMed ID: 23033101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ measurement on ultraviolet dielectric components by a pulsed top-hat beam thermal lens.
    Li B; Martin S; Welsch E
    Appl Opt; 2000 Sep; 39(25):4690-7. PubMed ID: 18350060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects.
    Wu Z; Stolz CJ; Weakley SC; Hughes JD; Zhao Q
    Appl Opt; 2001 Apr; 40(12):1897-906. PubMed ID: 18357189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photothermal self-phase-modulation technique for absorption measurements on high-reflective coatings.
    Steinlechner J; Jensen L; Krüger C; Lastzka N; Steinlechner S; Schnabel R
    Appl Opt; 2012 Mar; 51(8):1156-61. PubMed ID: 22410996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of low losses in optical thin films and materials.
    Mühlig C; Triebel W; Kufert S; Bublitz S
    Appl Opt; 2008 May; 47(13):C135-42. PubMed ID: 18449235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption measurements in optical coatings by lock-in thermography.
    Liu F; Gallais L
    Appl Opt; 2017 Nov; 56(33):9225-9232. PubMed ID: 29216095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A travelling photothermal technique employing pyroelectric detection to measure thermal diffusivity of films and coatings.
    Philip J; Manjusha MV; Soumya H
    Rev Sci Instrum; 2011 Oct; 82(10):104901. PubMed ID: 22047317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation.
    Cabrera H; Akbar J; Korte D; Ramírez-Miquet EE; Marín E; Niemela J; Ebrahimpour Z; Mannatunga K; Franko M
    Talanta; 2018 Jun; 183():158-163. PubMed ID: 29567158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of optical coatings by photothermal deflection.
    Commandré M; Roche P
    Appl Opt; 1996 Sep; 35(25):5021-34. PubMed ID: 21102930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical layer development for thin films thermal conductivity measurement by pulsed photothermal radiometry.
    Martan J
    Rev Sci Instrum; 2015 Jan; 86(1):014902. PubMed ID: 25638108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces.
    Gallais L; Commandré M
    Appl Opt; 2006 Mar; 45(7):1416-24. PubMed ID: 16539244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Absorptance behavior of optical coatings for high-average-power laser applications.
    Chow R; Taylor JR; Wu ZL
    Appl Opt; 2000 Feb; 39(4):650-8. PubMed ID: 18337938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low-absorption materials.
    Astrath NG; Astrath FB; Shen J; Zhou J; Pedreira PR; Malacarne LC; Bento AC; Baesso ML
    Opt Lett; 2008 Jul; 33(13):1464-6. PubMed ID: 18594666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state absorption rate models for use in relaxation rate studies with continuous laser excited photothermal lens spectrometry.
    Bialkowski SE
    Photochem Photobiol Sci; 2003 Jul; 2(7):779-87. PubMed ID: 12911227
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fiber-optic pulsed photothermal radiometry for fast surface-temperature measurements.
    Eyal O; Scharf V; Katzir A
    Appl Opt; 1998 Sep; 37(25):5945-50. PubMed ID: 18286089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of optical coatings for 157-nm lithography. II. Reflectance, absorption, and scatter measurement.
    Otani M; Biro R; Ouchi C; Hasegawa M; Suzuki Y; Sone K; Niisaka S; Saito T; Saito J; Tanaka A; Matsumoto A
    Appl Opt; 2002 Jun; 41(16):3248-55. PubMed ID: 12064409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.