These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
614 related articles for article (PubMed ID: 16927085)
1. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to improve succinate production. Wang Q; Chen X; Yang Y; Zhao X Appl Microbiol Biotechnol; 2006 Dec; 73(4):887-94. PubMed ID: 16927085 [TBL] [Abstract][Full Text] [Related]
2. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
3. In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example. Lee SY; Hong SH; Moon SY Genome Inform; 2002; 13():214-23. PubMed ID: 14571390 [TBL] [Abstract][Full Text] [Related]
4. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Sánchez AM; Bennett GN; San KY Biotechnol Prog; 2005; 21(2):358-65. PubMed ID: 15801771 [TBL] [Abstract][Full Text] [Related]
5. Expression of galactose permease and pyruvate carboxylase in Escherichia coli ptsG mutant increases the growth rate and succinate yield under anaerobic conditions. Wang Q; Wu C; Chen T; Chen X; Zhao X Biotechnol Lett; 2006 Jan; 28(2):89-93. PubMed ID: 16369691 [TBL] [Abstract][Full Text] [Related]
6. Genome-scale analysis of Mannheimia succiniciproducens metabolism. Kim TY; Kim HU; Park JM; Song H; Kim JS; Lee SY Biotechnol Bioeng; 2007 Jul; 97(4):657-71. PubMed ID: 17405177 [TBL] [Abstract][Full Text] [Related]
7. Characterizing Escherichia coli DH5alpha growth and metabolism in a complex medium using genome-scale flux analysis. Selvarasu S; Ow DS; Lee SY; Lee MM; Oh SK; Karimi IA; Lee DY Biotechnol Bioeng; 2009 Feb; 102(3):923-34. PubMed ID: 18853410 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and in silico gene knockout simulation. Lee SJ; Lee DY; Kim TY; Kim BH; Lee J; Lee SY Appl Environ Microbiol; 2005 Dec; 71(12):7880-7. PubMed ID: 16332763 [TBL] [Abstract][Full Text] [Related]
9. High-level succinic acid production and yield by lactose-induced expression of phosphoenolpyruvate carboxylase in ptsG mutant Escherichia coli. Wang D; Li Q; Mao Y; Xing J; Su Z Appl Microbiol Biotechnol; 2010 Aug; 87(6):2025-35. PubMed ID: 20521041 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Escherichia coli and in silico comparing of carboxylation pathways for high succinate productivity under aerobic conditions. Yang J; Wang Z; Zhu N; Wang B; Chen T; Zhao X Microbiol Res; 2014; 169(5-6):432-40. PubMed ID: 24103861 [TBL] [Abstract][Full Text] [Related]
11. In silico deletion of PtsG gene in Escherichia coli genome-scale model predicts increased succinate production from glycerol. Mienda BS; Shamsir MS J Biomol Struct Dyn; 2015; 33(11):2380-9. PubMed ID: 25921851 [TBL] [Abstract][Full Text] [Related]
12. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413 [TBL] [Abstract][Full Text] [Related]
13. Effect of Sorghum vulgare phosphoenolpyruvate carboxylase and Lactococcus lactis pyruvate carboxylase coexpression on succinate production in mutant strains of Escherichia coli. Lin H; San KY; Bennett GN Appl Microbiol Biotechnol; 2005 Jun; 67(4):515-23. PubMed ID: 15565333 [TBL] [Abstract][Full Text] [Related]
14. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions. Lin H; Bennett GN; San KY Biotechnol Bioeng; 2005 Jun; 90(6):775-9. PubMed ID: 15803467 [TBL] [Abstract][Full Text] [Related]
15. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Jantama K; Zhang X; Moore JC; Shanmugam KT; Svoronos SA; Ingram LO Biotechnol Bioeng; 2008 Dec; 101(5):881-93. PubMed ID: 18781696 [TBL] [Abstract][Full Text] [Related]
16. CASOP: a computational approach for strain optimization aiming at high productivity. Hädicke O; Klamt S J Biotechnol; 2010 May; 147(2):88-101. PubMed ID: 20303369 [TBL] [Abstract][Full Text] [Related]
17. Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. Lu S; Eiteman MA; Altman E J Biotechnol; 2009 Sep; 143(3):213-23. PubMed ID: 19631242 [TBL] [Abstract][Full Text] [Related]
18. In silico strategy to rationally engineer metabolite production: A case study for threonine in Escherichia coli. Rodríguez-Prados JC; de Atauri P; Maury J; Ortega F; Portais JC; Chassagnole C; Acerenza L; Lindley ND; Cascante M Biotechnol Bioeng; 2009 Jun; 103(3):609-20. PubMed ID: 19219914 [TBL] [Abstract][Full Text] [Related]