BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16927091)

  • 1. Efficient production of transgenic citrus plants using isopentenyl transferase positive selection and removal of the marker gene by site-specific recombination.
    Ballester A; Cervera M; Peña L
    Plant Cell Rep; 2007 Jan; 26(1):39-45. PubMed ID: 16927091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of selection strategies alternative to nptII in genetic transformation of citrus.
    Ballester A; Cervera M; Peña L
    Plant Cell Rep; 2008 Jun; 27(6):1005-15. PubMed ID: 18317775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining a regeneration-promoting ipt gene and site-specific recombination allows a more efficient apricot transformation and the elimination of marker genes.
    López-Noguera S; Petri C; Burgos L
    Plant Cell Rep; 2009 Dec; 28(12):1781-90. PubMed ID: 19820947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biolistic transformation of Carrizo citrange (Citrus sinensis Osb. × Poncirus trifoliata L. Raf.).
    Wu H; Acanda Y; Jia H; Wang N; Zale J
    Plant Cell Rep; 2016 Sep; 35(9):1955-62. PubMed ID: 27277128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection.
    Zou X; Peng A; Xu L; Liu X; Lei T; Yao L; He Y; Chen S
    Plant Cell Rep; 2013 Oct; 32(10):1601-13. PubMed ID: 23771575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction of a citrus blight-associated gene into Carrizo citrange [Citrus sinensis (L.) Osbc. x Poncirus trifoliata (L.) Raf.] by Agrobacterium-mediated transformation.
    Kayim M; Ceccardi TL; Berretta MJ; Barthe GA; Derrick KS
    Plant Cell Rep; 2004 Nov; 23(6):377-85. PubMed ID: 15248084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of transgenic barrel medic (Medicago truncatula Gaernt.) using the ipt-type MAT vector system and impairment of Recombinase-mediated excision events.
    Scaramelli L; Balestrazzi A; Bonadei M; Piano E; Carbonera D; Confalonieri M
    Plant Cell Rep; 2009 Feb; 28(2):197-211. PubMed ID: 19011862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system.
    Endo S; Sugita K; Sakai M; Tanaka H; Ebinuma H
    Plant J; 2002 Apr; 30(1):115-22. PubMed ID: 11967098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system.
    Darwish NA; Khan RS; Ntui VO; Nakamura I; Mii M
    Plant Cell Rep; 2014 Mar; 33(3):411-21. PubMed ID: 24311155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker.
    Khan RS; Ntui VO; Chin DP; Nakamura I; Mii M
    Plant Cell Rep; 2011 Apr; 30(4):587-97. PubMed ID: 21184230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck).
    Boscariol RL; Almeida WA; Derbyshire MT; Mourão Filho FA; Mendes BM
    Plant Cell Rep; 2003 Sep; 22(2):122-8. PubMed ID: 12879258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of disease-resistant marker-free tomato by R/RS site-specific recombination.
    Khan RS; Nakamura I; Mii M
    Plant Cell Rep; 2011 Jun; 30(6):1041-53. PubMed ID: 21293863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Refinement of the Citrus tristeza virus resistance gene (Ctv) positional map in Poncirus trifoliata and generation of transgenic grapefruit (Citrus paradisi) plant lines with candidate resistance genes in this region.
    Rai M
    Plant Mol Biol; 2006 Jun; 61(3):399-414. PubMed ID: 16830176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible expression of Bs2 R gene from Capsicum chacoense in sweet orange (Citrus sinensis L. Osbeck) confers enhanced resistance to citrus canker disease.
    Sendín LN; Orce IG; Gómez RL; Enrique R; Grellet Bournonville CF; Noguera AS; Vojnov AA; Marano MR; Castagnaro AP; Filippone MP
    Plant Mol Biol; 2017 Apr; 93(6):607-621. PubMed ID: 28155188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Genetic Transformation of Sweet Orange (Citrus sinensis L. Osbeck) for Enhanced Resistance to Citrus Canker.
    Sendin LN; Filippone MP
    Methods Mol Biol; 2019; 1864():179-190. PubMed ID: 30415337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field performance of transgenic citrus trees: assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics.
    Pons E; Peris JE; Peña L
    BMC Biotechnol; 2012 Jul; 12():41. PubMed ID: 22794278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of marker genes from transgenic plants using MAT vector systems.
    Ebinuma H; Sugita K; Endo S; Matsunaga E; Yamada K
    Methods Mol Biol; 2005; 286():237-54. PubMed ID: 15310926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of Marker-Free Genetically Modified Maize Using a Heat-Inducible Auto-Excision Vector.
    Du D; Jin R; Guo J; Zhang F
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31108922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducible isopentenyl transferase as a high-efficiency marker for plant transformation.
    Kunkel T; Niu QW; Chan YS; Chua NH
    Nat Biotechnol; 1999 Sep; 17(9):916-9. PubMed ID: 10471937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency.
    Sugita K; Kasahara T; Matsunaga E; Ebinuma H
    Plant J; 2000 Jun; 22(5):461-9. PubMed ID: 10849362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.