BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 16927091)

  • 21. Factors influencing Agrobacterium-mediated embryogenic callus transformation of Valencia sweet orange (Citrus sinensis) containing the pTA29-barnase gene.
    Li DD; Shi W; Deng XX
    Tree Physiol; 2003 Dec; 23(17):1209-15. PubMed ID: 14597430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene.
    Guo W; Duan Y; Olivares-Fuster O; Wu Z; Arias CR; Burns JK; Grosser JW
    Plant Cell Rep; 2005 Oct; 24(8):482-6. PubMed ID: 15875190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inducible excision of selectable marker gene from transgenic plants by the cre/lox site-specific recombination system.
    Wang Y; Chen B; Hu Y; Li J; Lin Z
    Transgenic Res; 2005 Oct; 14(5):605-14. PubMed ID: 16245151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic transformation of lime (Citrus aurantifolia Swing.): factors affecting transformation and regeneration.
    Peña L; Cervera M; Juárez J; Navarro A; Pina JA; Navarro L
    Plant Cell Rep; 1997 Sep; 16(11):731-737. PubMed ID: 30727680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression of Bacillus thuringiensis cytolytic toxin (Cyt2Ca1) in citrus roots to control Diaprepes abbreviatus larvae.
    Mahmoud SB; Ramos JE; Shatters RG; Hall DG; Lapointe SL; Niedz RP; Rougé P; Cave RD; Borovsky D
    Pestic Biochem Physiol; 2017 Mar; 136():1-11. PubMed ID: 28187824
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease.
    Yang L; Hu C; Li N; Zhang J; Yan J; Deng Z
    Plant Mol Biol; 2011 Jan; 75(1-2):11-23. PubMed ID: 20972821
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene stacking in 1-year-cycling APETALA1 citrus plants for a rapid evaluation of transgenic traits in reproductive tissues.
    Cervera M; Navarro L; Peña L
    J Biotechnol; 2009 Mar; 140(3-4):278-82. PubMed ID: 19428724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus×domestica Borkh.).
    Herzog K; Flachowsky H; Deising HB; Hanke MV
    Gene; 2012 Apr; 498(1):41-9. PubMed ID: 22349025
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants.
    Saelim L; Phansiri S; Suksangpanomrung M; Netrphan S; Narangajavana J
    Plant Cell Rep; 2009 Mar; 28(3):445-55. PubMed ID: 19093119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration.
    de Oliveira ML; Febres VJ; Costa MG; Moore GA; Otoni WC
    Plant Cell Rep; 2009 Mar; 28(3):387-95. PubMed ID: 19048258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Auto-excision of selectable marker genes from transgenic tobacco via a stress inducible FLP/FRT site-specific recombination system.
    Woo HJ; Cho HS; Lim SH; Shin KS; Lee SM; Lee KJ; Kim DH; Cho YG
    Transgenic Res; 2009 Jun; 18(3):455-65. PubMed ID: 19160066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system.
    Sreekala C; Wu L; Gu K; Wang D; Tian D; Yin Z
    Plant Cell Rep; 2005 May; 24(2):86-94. PubMed ID: 15662501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene.
    Gleave AP; Mitra DS; Mudge SR; Morris BA
    Plant Mol Biol; 1999 May; 40(2):223-35. PubMed ID: 10412902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stress-inducible Arabidopsis thaliana RD29A promoter constitutively drives Citrus sinensis APETALA1 and LEAFY expression and precocious flowering in transgenic Citrus spp.
    Orbović V; Ravanfar SA; Acanda Y; Narvaez J; Merritt BA; Levy A; Lovatt CJ
    Transgenic Res; 2021 Oct; 30(5):687-699. PubMed ID: 34053006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selection of marker-free transgenic plants using the isopentenyl transferase gene.
    Ebinuma H; Sugita K; Matsunaga E; Yamakado M
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2117-21. PubMed ID: 11038607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modifying fatty acid profiles through a new cytokinin-based plastid transformation system.
    Dunne A; Maple-Grødem J; Gargano D; Haslam RP; Napier JA; Chua NH; Russell R; Møller SG
    Plant J; 2014 Dec; 80(6):1131-8. PubMed ID: 25280363
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit.
    Kato M; Ikoma Y; Matsumoto H; Sugiura M; Hyodo H; Yano M
    Plant Physiol; 2004 Feb; 134(2):824-37. PubMed ID: 14739348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of marker-free transgenic Nierembergia caerulea using MAT vector system.
    Khan RS; Chin DP; Nakamura I; Mii M
    Plant Cell Rep; 2006 Sep; 25(9):914-9. PubMed ID: 16604375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Citrus transformation using juvenile tissue explants.
    Orbović V; Grosser JW
    Methods Mol Biol; 2015; 1224():245-57. PubMed ID: 25416263
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient transformation and regeneration of transgenic plants in commercial cultivars of Citrus aurantifolia and Citrus sinensis.
    Singh S; Tarannum Z; Kokane S; Ghosh DK; Sharma AK; Chauhan H
    Transgenic Res; 2023 Dec; 32(6):523-536. PubMed ID: 37702987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.