These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16927276)

  • 21. Rational chemical strategies for carbon nanotube functionalization.
    Banerjee S; Kahn MG; Wong SS
    Chemistry; 2003 May; 9(9):1898-908. PubMed ID: 12740836
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry.
    Chichak KS; Star A; AltoƩ MV; Stoddart JF
    Small; 2005 Apr; 1(4):452-61. PubMed ID: 17193471
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy.
    Ago H; Imamura S; Okazaki T; Saito T; Yumura M; Tsuji M
    J Phys Chem B; 2005 May; 109(20):10035-41. PubMed ID: 16852214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical characterizations and electronic devices of nearly pure (10,5) single-walled carbon nanotubes.
    Zhang L; Tu X; Welsher K; Wang X; Zheng M; Dai H
    J Am Chem Soc; 2009 Feb; 131(7):2454-5. PubMed ID: 19193007
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Helical superstructures of fullerene peapods and empty single-walled carbon nanotubes formed in water.
    Nakashima N; Tanaka Y; Tomonari Y; Murakami H; Kataura H; Sakaue T; Yoshikawa K
    J Phys Chem B; 2005 Jul; 109(27):13076-82. PubMed ID: 16852626
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Environmental and synthesis-dependent luminescence properties of individual single-walled carbon nanotubes.
    Duque JG; Pasquali M; Cognet L; Lounis B
    ACS Nano; 2009 Aug; 3(8):2153-6. PubMed ID: 19594113
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fundamental properties of oligo double-stranded DNA/single-walled carbon nanotube nanobiohybrids.
    Yamamoto Y; Fujigaya T; Niidome Y; Nakashima N
    Nanoscale; 2010 Sep; 2(9):1767-72. PubMed ID: 20820708
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Attachment of functionalized single-walled carbon nanotubes (SWNTs) to silicon surfaces.
    Zeng L; Pattyn N; Barron AR
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1545-50. PubMed ID: 18468188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Abnormal micellar growth in sugar-based and ethoxylated nonionic surfactants and their mixtures in dilute regimes using analytical ultracentrifugation.
    Zhang R; Somasundaran P
    Langmuir; 2004 Sep; 20(20):8552-8. PubMed ID: 15379474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Singling out the electrochemistry of individual single-walled carbon nanotubes in solution.
    Paolucci D; Franco MM; Iurlo M; Marcaccio M; Prato M; Zerbetto F; PĆ©nicaud A; Paolucci F
    J Am Chem Soc; 2008 Jun; 130(23):7393-9. PubMed ID: 18479091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrodynamic characterization of surfactant encapsulated carbon nanotubes using an analytical ultracentrifuge.
    Arnold MS; Suntivich J; Stupp SI; Hersam MC
    ACS Nano; 2008 Nov; 2(11):2291-300. PubMed ID: 19206395
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lipid-carbon nanotube self-assembly in aqueous solution.
    Qiao R; Ke PC
    J Am Chem Soc; 2006 Oct; 128(42):13656-7. PubMed ID: 17044671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tuning of electronic properties of single-walled carbon nanotubes under homogenous conditions.
    Maeda Y; Sagara A; Hashimoto M; Hirashima Y; Sode K; Hasegawa T; Kanda M; Ishitsuka MO; Tsuchiya T; Akasaka T; Okazaki T; Kataura H; Lu J; Nagase S; Takeuchi S
    Chemphyschem; 2009 Apr; 10(6):926-30. PubMed ID: 19266527
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of chemically separated carbon nanotubes for nanoelectronics.
    Zhang L; Zaric S; Tu X; Wang X; Zhao W; Dai H
    J Am Chem Soc; 2008 Feb; 130(8):2686-91. PubMed ID: 18251484
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein-assisted solubilization of single-walled carbon nanotubes.
    Karajanagi SS; Yang H; Asuri P; Sellitto E; Dordick JS; Kane RS
    Langmuir; 2006 Feb; 22(4):1392-5. PubMed ID: 16460050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociation of electrolytes in a nano-aqueous system within single-wall carbon nanotubes.
    Zhang M; Yudasaka M; Iijima S
    J Phys Chem B; 2005 Apr; 109(13):6037-9. PubMed ID: 16851661
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stable containment of radionuclides on the nanoscale by cut single-wall carbon nanotubes.
    Mackeyev YA; Marks JW; Rosenblum MG; Wilson LJ
    J Phys Chem B; 2005 Mar; 109(12):5482-4. PubMed ID: 16851586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noncovalent functionalization of single-walled carbon nanotubes.
    Zhao YL; Stoddart JF
    Acc Chem Res; 2009 Aug; 42(8):1161-71. PubMed ID: 19462997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of alternating L-/D-amino acid chiralities and disulfide bond geometry on the capacity of cysteine-containing reversible cyclic peptides to disperse carbon nanotubes.
    Becraft EJ; Klimenko AS; Dieckmann GR
    Biopolymers; 2009; 92(3):212-21. PubMed ID: 19283829
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dispersion of single-walled carbon nanotubes of narrow diameter distribution.
    Tan Y; Resasco DE
    J Phys Chem B; 2005 Aug; 109(30):14454-60. PubMed ID: 16852820
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.