These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16927334)

  • 1. Catalytic conversion of cellulose into sugar alcohols.
    Fukuoka A; Dhepe PL
    Angew Chem Int Ed Engl; 2006 Aug; 45(31):5161-3. PubMed ID: 16927334
    [No Abstract]   [Full Text] [Related]  

  • 2. Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers.
    Van de Vyver S; Geboers J; Dusselier M; Schepers H; Vosch T; Zhang L; Van Tendeloo G; Jacobs PA; Sels BF
    ChemSusChem; 2010 Jun; 3(6):698-701. PubMed ID: 20446340
    [No Abstract]   [Full Text] [Related]  

  • 3. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon.
    Geboers J; Van de Vyver S; Carpentier K; de Blochouse K; Jacobs P; Sels B
    Chem Commun (Camb); 2010 May; 46(20):3577-9. PubMed ID: 20376382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols.
    Palkovits R; Tajvidi K; Ruppert AM; Procelewska J
    Chem Commun (Camb); 2011 Jan; 47(1):576-8. PubMed ID: 21103493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts.
    Kobayashi H; Matsuhashi H; Komanoya T; Hara K; Fukuoka A
    Chem Commun (Camb); 2011 Feb; 47(8):2366-8. PubMed ID: 21161096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of cellulose to hexitols catalyzed by ionic liquid-stabilized ruthenium nanoparticles and a reversible binding agent.
    Zhu Y; Kong ZN; Stubbs LP; Lin H; Shen S; Anslyn EV; Maguire JA
    ChemSusChem; 2010; 3(1):67-70. PubMed ID: 20024980
    [No Abstract]   [Full Text] [Related]  

  • 7. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals.
    Ruppert AM; Weinberg K; Palkovits R
    Angew Chem Int Ed Engl; 2012 Mar; 51(11):2564-601. PubMed ID: 22374680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of platform chemicals and synthesis gas from biomass.
    Kamm B
    Angew Chem Int Ed Engl; 2007; 46(27):5056-8. PubMed ID: 17568463
    [No Abstract]   [Full Text] [Related]  

  • 9. One pot catalytic conversion of cellulose into biodegradable surfactants.
    Villandier N; Corma A
    Chem Commun (Camb); 2010 Jun; 46(24):4408-10. PubMed ID: 20480120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds.
    Lu Q; Xiong WM; Li WZ; Guo QX; Zhu XF
    Bioresour Technol; 2009 Oct; 100(20):4871-6. PubMed ID: 19473837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts.
    Ji N; Zhang T; Zheng M; Wang A; Wang H; Wang X; Chen JG
    Angew Chem Int Ed Engl; 2008; 47(44):8510-3. PubMed ID: 18785670
    [No Abstract]   [Full Text] [Related]  

  • 12. Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: activity and stability studies.
    Karra-Châabouni M; Bouaziz I; Boufi S; Botelho do Rego AM; Gargouri Y
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):168-77. PubMed ID: 18684596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mild and environmentally friendly scandium(III) trifluoromethanesulfonate-catalyzed synthesis of bis(3'-indolyl)alkanes and bis(3'-indolyl)-1-deoxyalditols.
    Sato S; Sato T
    Carbohydr Res; 2005 Oct; 340(14):2251-5. PubMed ID: 16098491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between the CBM of Cel9A from Thermobifida fusca and cellulose fibers.
    Oliveira OV; Freitas LC; Straatsma TP; Lins RD
    J Mol Recognit; 2009; 22(1):38-45. PubMed ID: 18853469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulose conversion under heterogeneous catalysis.
    Dhepe PL; Fukuoka A
    ChemSusChem; 2008; 1(12):969-75. PubMed ID: 19021143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodium-catalyzed decarbonylation of aldoses.
    Monrad RN; Madsen R
    J Org Chem; 2007 Dec; 72(25):9782-5. PubMed ID: 17979290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative characterization of a recombinant Volvariella volvacea endoglucanase I (EG1) with its truncated catalytic core (EG1-CM), and their impact on the bio-treatment of cellulose-based fabrics.
    Wu S; Ding S; Zhou R; Li Z
    J Biotechnol; 2007 Jul; 130(4):364-9. PubMed ID: 17610980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustainable green catalysis by supported metal nanoparticles.
    Fukuoka A; Dhepe PL
    Chem Rec; 2009; 9(4):224-35. PubMed ID: 19701957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of alpha,alpha-, alpha,Beta-, and Beta,Beta-(dimaltoside)s of ethane-1,2-diol, propane-1,3-diol, and butane-1,4-diol: a proposal for an initial adhesion mode.
    Tsuzuki M; Tsuchiya T
    Carbohydr Res; 1998 Sep; 311(1-2):11-24. PubMed ID: 9821265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, enzymatic activity, and X-ray crystallography of an unusual class of amino acids.
    Chen W; Kuntz DA; Hamlet T; Sim L; Rose DR; Mario Pinto B
    Bioorg Med Chem; 2006 Dec; 14(24):8332-40. PubMed ID: 17010621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.