BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1692736)

  • 1. Differential inactivation of Escherichia coli membrane dehydrogenases by a myeloperoxidase-mediated antimicrobial system.
    Rakita RM; Michel BR; Rosen H
    Biochemistry; 1990 Jan; 29(4):1075-80. PubMed ID: 1692736
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myeloperoxidase-mediated damage to the succinate oxidase system of Escherichia coli. Evidence for selective inactivation of the dehydrogenase component.
    Rosen H; Rakita RM; Waltersdorph AM; Klebanoff SJ
    J Biol Chem; 1987 Nov; 262(31):15004-10. PubMed ID: 2822709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloperoxidase-mediated inhibition of microbial respiration: damage to Escherichia coli ubiquinol oxidase.
    Rakita RM; Michel BR; Rosen H
    Biochemistry; 1989 Apr; 28(7):3031-6. PubMed ID: 2545243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypochlorous acid and myeloperoxidase-catalyzed oxidation of iron-sulfur clusters in bacterial respiratory dehydrogenases.
    Hurst JK; Barrette WC; Michel BR; Rosen H
    Eur J Biochem; 1991 Dec; 202(3):1275-82. PubMed ID: 1662610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Respiration and protein synthesis in Escherichia coli membrane-envelope fragments. I. Oxidative activities with soluble substrates.
    Hendler RW; Burgess AH; Scharff R
    J Cell Biol; 1969 Sep; 42(3):715-32. PubMed ID: 4308312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Microbicidal Action of E-101 Solution, a Myeloperoxidase-Mediated Antimicrobial, and Its Oxidative Products.
    Denys GA; Devoe NC; Gudis P; May M; Allen RC; Stephens JT
    Infect Immun; 2019 Jul; 87(7):. PubMed ID: 31010816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Escherichia coli respiratory enzymes by the lactoperoxidase-hydrogen peroxide-thiocyanate antimicrobial system.
    Shin K; Hayasawa H; Lönnerdal B
    J Appl Microbiol; 2001 Apr; 90(4):489-93. PubMed ID: 11309058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and localization of enzymes of the fumarate reductase and nitrate respiration systems of escherichia coli by crossed immunoelectrophoresis.
    van der Plas J; Hellingwerf KJ; Seijen HG; Guest JR; Weiner JH; Konings WN
    J Bacteriol; 1983 Feb; 153(2):1027-37. PubMed ID: 6218154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tellurite-mediated damage to the Escherichia coli NDH-dehydrogenases and terminal oxidases in aerobic conditions.
    Díaz-Vásquez WA; Abarca-Lagunas MJ; Cornejo FA; Pinto CA; Arenas FA; Vásquez CC
    Arch Biochem Biophys; 2015 Jan; 566():67-75. PubMed ID: 25447814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Respiration and protein synthesis in Escherichia coli membrane-envelope fragments. VI. Solubilization and characterization of the electron transport chain.
    Hendler RW; Burgess AH
    J Cell Biol; 1972 Nov; 55(2):266-81. PubMed ID: 4403970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of DNA-membrane interactions and cessation of DNA synthesis in myeloperoxidase-treated Escherichia coli.
    Rosen H; Orman J; Rakita RM; Michel BR; VanDevanter DR
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):10048-52. PubMed ID: 2175901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy-linked reduction of nicotinamide--adenine dinucleotide in membranes derived from normal and various respiratory-deficient mutant strains of Escherichia coli K12.
    Poole RK; Haddock BA
    Biochem J; 1974 Oct; 144(1):77-85. PubMed ID: 4156832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effects of galloylglucose on nicotinamide adenine dinucleotide dehydrogenases of the aerobic respiratory chain of Escherichia coli.
    Konishi K; Adachi H; Kita K; Horikoshi I
    Chem Pharm Bull (Tokyo); 1990 Feb; 38(2):474-6. PubMed ID: 2186879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The energetic conversion competence of Escherichia coli during aerobic respiration studied by 31P NMR using a circulating fermentation system.
    Noguchi Y; Nakai Y; Shimba N; Toyosaki H; Kawahara Y; Sugimoto S; Suzuki E
    J Biochem; 2004 Oct; 136(4):509-15. PubMed ID: 15625321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Succinate dehydrogenase and fumarate reductase from Escherichia coli.
    Cecchini G; Schröder I; Gunsalus RP; Maklashina E
    Biochim Biophys Acta; 2002 Jan; 1553(1-2):140-57. PubMed ID: 11803023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation of microbial iron-sulfur centers by the myeloperoxidase-H2O2-halide antimicrobial system.
    Rosen H; Klebanoff SJ
    Infect Immun; 1985 Mar; 47(3):613-8. PubMed ID: 2982737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proline dehydrogenase from Escherichia coli K12. Properties of the membrane-associated enzyme.
    Abrahamson JL; Baker LG; Stephenson JT; Wood JM
    Eur J Biochem; 1983 Jul; 134(1):77-82. PubMed ID: 6305659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative enzymes in the development of Fasciola hepatica L. IV. The activity of oxidases and dehydrogenases in redia.
    Humiczewska M
    Folia Histochem Cytochem (Krakow); 1975; 13(3-4):161-74. PubMed ID: 173635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria.
    Chapman C; Bartley W
    Biochem J; 1968 Apr; 107(4):455-65. PubMed ID: 5660627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limiting availability of binding sites for dehydrogenases on the cell membrane of Escherichia coli.
    Kung HF; Henning U
    Proc Natl Acad Sci U S A; 1972 Apr; 69(4):925-9. PubMed ID: 4554536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.