BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 16927370)

  • 1. Development, validation, and application of adapted PEOE charges to estimate pKa values of functional groups in protein-ligand complexes.
    Czodrowski P; Dramburg I; Sotriffer CA; Klebe G
    Proteins; 2006 Nov; 65(2):424-37. PubMed ID: 16927370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Very fast prediction and rationalization of pKa values for protein-ligand complexes.
    Bas DC; Rogers DM; Jensen JH
    Proteins; 2008 Nov; 73(3):765-83. PubMed ID: 18498103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonation changes upon ligand binding to trypsin and thrombin: structural interpretation based on pK(a) calculations and ITC experiments.
    Czodrowski P; Sotriffer CA; Klebe G
    J Mol Biol; 2007 Apr; 367(5):1347-56. PubMed ID: 17316681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating protein-ligand binding free energy: atomic solvation parameters for partition coefficient and solvation free energy calculation.
    Pei J; Wang Q; Zhou J; Lai L
    Proteins; 2004 Dec; 57(4):651-64. PubMed ID: 15390269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the pKa values of water ligands in transition metal complexes using density functional theory with polarized continuum model solvent corrections.
    Gilson R; Durrant MC
    Dalton Trans; 2009 Dec; (46):10223-30. PubMed ID: 19921057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatics in proteins and protein-ligand complexes.
    Kukić P; Nielsen JE
    Future Med Chem; 2010 Apr; 2(4):647-66. PubMed ID: 21426012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EADock: docking of small molecules into protein active sites with a multiobjective evolutionary optimization.
    Grosdidier A; Zoete V; Michielin O
    Proteins; 2007 Jun; 67(4):1010-25. PubMed ID: 17380512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings.
    Bosshard HR; Marti DN; Jelesarov I
    J Mol Recognit; 2004; 17(1):1-16. PubMed ID: 14872533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The thermodynamics of protein-ligand interaction and solvation: insights for ligand design.
    Olsson TS; Williams MA; Pitt WR; Ladbury JE
    J Mol Biol; 2008 Dec; 384(4):1002-17. PubMed ID: 18930735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-scaled cavities in polarizable continuum model: determination of acid dissociation constants for platinum-amino acid complexes.
    Zimmermann T; Burda JV
    J Chem Phys; 2009 Oct; 131(13):135101. PubMed ID: 19814573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure analysis and in silico pKa calculations suggest strong pKa shifts of ligands as driving force for high-affinity binding to TGT.
    Ritschel T; Hoertner S; Heine A; Diederich F; Klebe G
    Chembiochem; 2009 Mar; 10(4):716-27. PubMed ID: 19199329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple protonation equilibria in electrostatics of protein-protein binding.
    Piłat Z; Antosiewicz JM
    J Phys Chem B; 2008 Nov; 112(47):15074-85. PubMed ID: 18950218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new implicit solvent model for protein-ligand docking.
    Morreale A; Gil-Redondo R; Ortiz AR
    Proteins; 2007 May; 67(3):606-16. PubMed ID: 17330937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges in pKa predictions for proteins: the case of Asp213 in human proteinase 3.
    Hajjar E; Dejaegere A; Reuter N
    J Phys Chem A; 2009 Oct; 113(43):11783-92. PubMed ID: 19780520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved pK(a) prediction: combining empirical and semimicroscopic methods.
    Kieseritzky G; Knapp EW
    J Comput Chem; 2008 Nov; 29(15):2575-81. PubMed ID: 18470967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 'Inductive' charges on atoms in proteins: comparative docking with the extended steroid benchmark set and discovery of a novel SHBG ligand.
    Cherkasov A; Shi Z; Li Y; Jones SJ; Fallahi M; Hammond GL
    J Chem Inf Model; 2005; 45(6):1842-53. PubMed ID: 16309292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communication: Quantum polarized fluctuating charge model: a practical method to include ligand polarizability in biomolecular simulations.
    Kimura SR; Rajamani R; Langley DR
    J Chem Phys; 2011 Dec; 135(23):231101. PubMed ID: 22191857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cluster hydration model for binding energy calculations of protein-ligand complexes.
    Murata K; Fedorov DG; Nakanishi I; Kitaura K
    J Phys Chem B; 2009 Jan; 113(3):809-17. PubMed ID: 19117385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Why are proteins charged? Networks of charge-charge interactions in proteins measured by charge ladders and capillary electrophoresis.
    Gitlin I; Carbeck JD; Whitesides GM
    Angew Chem Int Ed Engl; 2006 May; 45(19):3022-60. PubMed ID: 16619322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.