These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 16927978)

  • 21. Ce-doped ZnO (Ce(x)Zn(1-x)O) becomes an efficient visible-light-sensitive photocatalyst by co-catalyst (Cu2+) grafting.
    Anandan S; Miyauchi M
    Phys Chem Chem Phys; 2011 Sep; 13(33):14937-45. PubMed ID: 21761055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-pressure CO adsorption on Cu-based catalysts: Zn-induced formation of strongly bound CO monitored by ATR-IR spectroscopy.
    Liu Z; Rittermeier A; Becker M; Kähler K; Löffler E; Muhler M
    Langmuir; 2011 Apr; 27(8):4728-33. PubMed ID: 21438509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unusual physical and chemical properties of Cu in Ce(1-x)Cu(x)O(2) oxides.
    Wang X; Rodriguez JA; Hanson JC; Gamarra D; Martínez-Arias A; Fernandez-García M
    J Phys Chem B; 2005 Oct; 109(42):19595-603. PubMed ID: 16853534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption dynamics of CO2 on copper-precovered ZnO(0001)-Zn: a molecular-beam scattering and thermal-desorption spectroscopy study.
    Wang J; Funk S; Burghaus U
    J Chem Phys; 2005 Nov; 123(20):204710. PubMed ID: 16351296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Noble metal ionic catalysts.
    Hegde MS; Madras G; Patil KC
    Acc Chem Res; 2009 Jun; 42(6):704-12. PubMed ID: 19425544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ XAS and IR studies on Cu:SAPO-5 and Cu:SAPO-11: the contributory role of monomeric linear copper(i) species in the selective catalytic reduction of NOx by propene.
    Mathisen K; Stockenhuber M; Nicholson DG
    Phys Chem Chem Phys; 2009 Jul; 11(26):5476-88. PubMed ID: 19551218
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microstructure investigations of ball milled materials.
    Huang JY; Wu YK; Ye HQ
    Microsc Res Tech; 1998 Jan; 40(2):101-21. PubMed ID: 9504123
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overall water splitting on (Ga(1-x)Zn(x))(N(1-x)O(x)) solid solution photocatalyst: relationship between physical properties and photocatalytic activity.
    Maeda K; Teramura K; Takata T; Hara M; Saito N; Toda K; Inoue Y; Kobayashi H; Domen K
    J Phys Chem B; 2005 Nov; 109(43):20504-10. PubMed ID: 16853653
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of rac-[Cu(diimine)3]2+ and rac-[Zn(diimine)3]2+ complexes with CT DNA: effect of fluxional Cu(II) geometry on DNA binding, ligand-promoted exciton coupling and prominent DNA cleavage.
    Ramakrishnan S; Palaniandavar M
    Dalton Trans; 2008 Aug; (29):3866-78. PubMed ID: 18629409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Copper oxide nanocrystals.
    Yin M; Wu CK; Lou Y; Burda C; Koberstein JT; Zhu Y; O'Brien S
    J Am Chem Soc; 2005 Jul; 127(26):9506-11. PubMed ID: 15984877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characteristics of titania supported copper oxide catalysts for wet air oxidation of phenol.
    Kim KH; Ihm SK
    J Hazard Mater; 2007 Jul; 146(3):610-6. PubMed ID: 17513049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction.
    Bauer JC; Mullins D; Li M; Wu Z; Payzant EA; Overbury SH; Dai S
    Phys Chem Chem Phys; 2011 Feb; 13(7):2571-81. PubMed ID: 21246124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removing and recovering gas-phase elemental mercury by Cu(x)Co(3-x)O(4) (0.75< or = x < or =2.25) in the presence of sulphur compounds.
    Mei Z; Shen Z; Zhao Q; Yuan T; Zhang Y; Xiang F; Wang W
    Chemosphere; 2008 Feb; 70(8):1399-404. PubMed ID: 17988713
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cu-based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound: a microstructural, thermoanalytical, and in situ XAS study.
    Kühl S; Tarasov A; Zander S; Kasatkin I; Behrens M
    Chemistry; 2014 Mar; 20(13):3782-92. PubMed ID: 24615857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dependence of copper species on the nature of the support for dispersed CuO catalysts.
    Gervasini A; Manzoli M; Martra G; Ponti A; Ravasio N; Sordelli L; Zaccheria F
    J Phys Chem B; 2006 Apr; 110(15):7851-61. PubMed ID: 16610882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new insight into the recycling of hyperaccumulator: synthesis of the mixed Cu and Zn oxide nanoparticles using Brassica juncea L.
    Qu J; Luo C; Cong Q; Yuan X
    Int J Phytoremediation; 2012 Oct; 14(9):854-60. PubMed ID: 22908650
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.
    Aruoja V; Dubourguier HC; Kasemets K; Kahru A
    Sci Total Environ; 2009 Feb; 407(4):1461-8. PubMed ID: 19038417
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetics of hydrogen production of methanol reformation using Cu/ZnO/Al2O3 catalyst.
    Wu HS; Chung SC
    J Comb Chem; 2007; 9(6):990-7. PubMed ID: 17900166
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigation of phase composition and nanoscale microstructure of high-energy ball-milled MgCu sample.
    Ma Z; Liu Y; Yu L; Cai Q
    Nanoscale Res Lett; 2012 Jul; 7(1):390. PubMed ID: 22793264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mesosynthesis of ZnO-silica composites for methanol nanocatalysis.
    Polarz S; Neues F; van den Berg MW; Grünert W; Khodeir L
    J Am Chem Soc; 2005 Aug; 127(34):12028-34. PubMed ID: 16117543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.