These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 16927983)

  • 1. Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy.
    Wang T; Hu X; Dong S
    J Phys Chem B; 2006 Aug; 110(34):16930-6. PubMed ID: 16927983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant-directed multiple anisotropic gold nanostructures: synthesis and surface-enhanced Raman scattering.
    Joseph D; Geckeler KE
    Langmuir; 2009 Nov; 25(22):13224-31. PubMed ID: 19743838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering.
    Liu T; Xiao X; Yang C
    Langmuir; 2011 Apr; 27(8):4623-6. PubMed ID: 21438520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast growth of dendritic gold nanostructures and their applications in methanol electro-oxidation and surface-enhanced Raman scattering.
    Han X; Wang D; Huang J; Liu D; You T
    J Colloid Interface Sci; 2011 Feb; 354(2):577-84. PubMed ID: 21146178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-enhanced Raman scattering from surfactant-free 3D gold nanowire networks substrates.
    Wang T; Hu X; Wang J; Dong S
    Talanta; 2008 Apr; 75(2):455-60. PubMed ID: 18371906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wet-chemical approach to three-dimensional gold nanocorallines: synthesis and application in surface-enhanced Raman spectroscopy.
    Guo S; Wang E
    J Colloid Interface Sci; 2007 Nov; 315(2):795-9. PubMed ID: 17764686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence.
    Orendorff CJ; Gole A; Sau TK; Murphy CJ
    Anal Chem; 2005 May; 77(10):3261-6. PubMed ID: 15889917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled interparticle spacing for surface-modified gold nanoparticle aggregates.
    Basu S; Pande S; Jana S; Bolisetty S; Pal T
    Langmuir; 2008 May; 24(10):5562-8. PubMed ID: 18426230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemically bound gold nanoparticle arrays on silicon: assembly, properties and SERS study of protein interactions.
    Kaminska A; Inya-Agha O; Forster RJ; Keyes TE
    Phys Chem Chem Phys; 2008 Jul; 10(28):4172-80. PubMed ID: 18612522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanowires enabling signal-enhanced nanoscale Raman spectroscopy.
    Becker M; Sivakov V; Gösele U; Stelzner T; Andrä G; Reich HJ; Hoffmann S; Michler J; Christiansen SH
    Small; 2008 Apr; 4(4):398-404. PubMed ID: 18383193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental (SERS) and theoretical (DFT) studies on the adsorption of p-, m-, and o-nitroaniline on gold nanoparticles.
    Ma W; Fang Y
    J Colloid Interface Sci; 2006 Nov; 303(1):1-8. PubMed ID: 16949090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time fluctuations and imaging in the SERS spectra of fungal hypha grown on nanostructured substrates.
    Szeghalmi A; Kaminskyj S; Rösch P; Popp J; Gough KM
    J Phys Chem B; 2007 Nov; 111(44):12916-24. PubMed ID: 17944510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayer enhanced gold film over nanostructure surface-enhanced Raman substrates.
    Li H; Baum CE; Sun J; Cullum BM
    Appl Spectrosc; 2006 Dec; 60(12):1377-85. PubMed ID: 17217586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanorod arrays with good reproducibility for high-performance surface-enhanced Raman scattering.
    Liao Q; Mu C; Xu DS; Ai XC; Yao JN; Zhang JP
    Langmuir; 2009 Apr; 25(8):4708-14. PubMed ID: 19366228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors.
    Wang Y; Chen H; Dong S; Wang E
    J Chem Phys; 2006 Jul; 125(4):44710. PubMed ID: 16942177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.
    Yu Q; Braswell S; Christin B; Xu J; Wallace PM; Gong H; Kaminsky D
    Nanotechnology; 2010 Sep; 21(35):355301. PubMed ID: 20683142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-containing structures as a substrate for surface-enhanced Raman scattering.
    Addison CJ; Brolo AG
    Langmuir; 2006 Oct; 22(21):8696-702. PubMed ID: 17014107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Liposome-mediated enhancement of the sensitivity in immunoassay based on surface-enhanced Raman scattering at gold nanosphere array substrate.
    Liu X; Huan S; Bu Y; Shen G; Yu R
    Talanta; 2008 May; 75(3):797-803. PubMed ID: 18585149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.