BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 16928019)

  • 1. Breakdown of the Stokes-Einstein relationship: role of interactions in the size dependence of self-diffusivity.
    Sharma M; Yashonath S
    J Phys Chem B; 2006 Aug; 110(34):17207-11. PubMed ID: 16928019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion in nanoporous phases: size dependence and levitation effect.
    Yashonath S; Ghorai PK
    J Phys Chem B; 2008 Jan; 112(3):665-86. PubMed ID: 18085765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Stokes-Einstein relationship and the levitation effect: size-dependent diffusion maximum in dense fluids and close-packed disordered solids.
    Ghorai PK; Yashonath S
    J Phys Chem B; 2005 Mar; 109(12):5824-35. PubMed ID: 16851635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Existence of a size-dependent diffusivity maximum for uncharged solutes in water and its implications.
    Ghorai PK; Yashonath S
    J Phys Chem B; 2006 Jun; 110(24):12072-9. PubMed ID: 16800518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Levitation effect: Distinguishing anomalous from linear regime of guests sorbed in zeolites through the decay of intermediate scattering function and wavevector dependence of self-diffusivity.
    Ghorai PK; Yashonath S
    J Phys Chem B; 2005 Mar; 109(9):3979-83. PubMed ID: 16851453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion of organic solutes in squalane.
    Kowert BA; Watson MB
    J Phys Chem B; 2011 Aug; 115(32):9687-94. PubMed ID: 21780767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence in support of levitation effect as the reason for size dependence of ionic conductivity in water: a molecular dynamics simulation.
    Ghorai PK; Yashonath S
    J Phys Chem B; 2006 Jun; 110(24):12179-90. PubMed ID: 16800534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-dynamics investigation of tracer diffusion in a simple liquid: test of the Stokes-Einstein law.
    Ould-Kaddour F; Levesque D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 1):011205. PubMed ID: 11304244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of diffusivity on density and solute diameter in liquid phase: a molecular dynamics study of Lennard-Jones system.
    Varanasi SR; Kumar P; Yashonath S
    J Chem Phys; 2012 Apr; 136(14):144505. PubMed ID: 22502531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion of aromatic compounds in nonaqueous solvents: a study of solute, solvent, and temperature dependences.
    Chan TC; Tang WK
    J Chem Phys; 2013 Jun; 138(22):224503. PubMed ID: 23781801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffusion of flexible, charged, nanoscopic molecules in solution: Size and pH dependence for PAMAM dendrimer.
    Maiti PK; Bagchi B
    J Chem Phys; 2009 Dec; 131(21):214901. PubMed ID: 19968363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translational diffusion in sucrose benzoate near the glass transition: probe size dependence in the breakdown of the Stokes-Einstein equation.
    Rajian JR; Quitevis EL
    J Chem Phys; 2007 Jun; 126(22):224506. PubMed ID: 17581062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular rotation as a tool for exploring specific solute-solvent interactions.
    Dutt GB
    Chemphyschem; 2005 Mar; 6(3):413-8. PubMed ID: 15799460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water.
    Mazza MG; Giovambattista N; Stanley HE; Starr FW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031203. PubMed ID: 17930235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ions in water: role of attractive interactions in size dependent diffusivity maximum.
    Borah BJ; Yashonath S
    J Chem Phys; 2010 Sep; 133(11):114504. PubMed ID: 20866142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the breakdown of the Stokes-Einstein law in supercooled liquids.
    Kim J; Keyes T
    J Phys Chem B; 2005 Nov; 109(45):21445-8. PubMed ID: 16853782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Multisolute Steric Interactions on Membrane Partition Coefficients.
    Lazzara MJ; Blankschtein D; Deen WM
    J Colloid Interface Sci; 2000 Jun; 226(1):112-122. PubMed ID: 11401354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solute rotation in polar liquids: microscopic basis for the Stokes-Einstein-Debye model.
    Das A; Biswas R; Chakrabarti J
    J Chem Phys; 2012 Jan; 136(1):014505. PubMed ID: 22239787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-monotonic size dependence of diffusion and levitation effect: a mode-coupling theory analysis.
    Nandi MK; Banerjee A; Bhattacharyya SM
    J Chem Phys; 2013 Mar; 138(12):124505. PubMed ID: 23556734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent dependence of Stokes shift for organic solute-solvent systems: A comparative study by spectroscopy and reference interaction-site model-self-consistent-field theory.
    Nishiyama K; Watanabe Y; Yoshida N; Hirata F
    J Chem Phys; 2013 Sep; 139(9):094503. PubMed ID: 24028123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.