These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
689 related articles for article (PubMed ID: 16928274)
1. Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media. Sharma D; Agrawal A; Matchette LS; Pfefer TJ Biomed Eng Online; 2006 Aug; 5():49. PubMed ID: 16928274 [TBL] [Abstract][Full Text] [Related]
2. An integrated fiber-optic probe combined with support vector regression for fast estimation of optical properties of turbid media. Zhou Y; Fu X; Ying Y; Fang Z Anal Chim Acta; 2015 Jun; 880():122-9. PubMed ID: 26092344 [TBL] [Abstract][Full Text] [Related]
3. A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients. Kim A; Roy M; Dadani F; Wilson BC Opt Express; 2010 Mar; 18(6):5580-94. PubMed ID: 20389574 [TBL] [Abstract][Full Text] [Related]
4. A method for determination of the absorption and scattering properties interstitially in turbid media. Dimofte A; Finlay JC; Zhu TC Phys Med Biol; 2005 May; 50(10):2291-311. PubMed ID: 15876668 [TBL] [Abstract][Full Text] [Related]
5. Experimental and theoretical evaluation of a fiber-optic approach for optical property measurement in layered epithelial tissue. Wang Q; Shastri K; Pfefer TJ Appl Opt; 2010 Oct; 49(28):5309-20. PubMed ID: 20885467 [TBL] [Abstract][Full Text] [Related]
6. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging. Qin J; Lu R Appl Spectrosc; 2007 Apr; 61(4):388-96. PubMed ID: 17456257 [TBL] [Abstract][Full Text] [Related]
8. Cost-effective diffuse reflectance spectroscopy device for quantifying tissue absorption and scattering in vivo. Yu B; Lo JY; Kuech TF; Palmer GM; Bender JE; Ramanujam N J Biomed Opt; 2008; 13(6):060505. PubMed ID: 19123646 [TBL] [Abstract][Full Text] [Related]
9. Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements. Sun J; Fu K; Wang A; Lin AW; Utzinger U; Drezek R Appl Opt; 2006 Nov; 45(31):8152-62. PubMed ID: 17068558 [TBL] [Abstract][Full Text] [Related]
10. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues. Nagarajan VK; Yu B Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022 [TBL] [Abstract][Full Text] [Related]
11. Determination of the optical properties of turbid media by measurements of the spatially resolved reflectance considering the point-spread function of the camera system. Pilz M; Honold S; Kienle A J Biomed Opt; 2008; 13(5):054047. PubMed ID: 19021427 [TBL] [Abstract][Full Text] [Related]
12. Estimation of optical properties of turbid media: experimental comparison of spatially and temporally resolved reflectance methods. Falconet J; Laidevant A; Sablong R; da Silva A; Berger M; Jaillon F; Perrin E; Dinten JM; Saint-Jalmes H Appl Opt; 2008 Apr; 47(11):1734-9. PubMed ID: 18404170 [TBL] [Abstract][Full Text] [Related]
13. Use of genetic algorithms to optimize fiber optic probe design for the extraction of tissue optical properties. Palmer GM; Ramanujam N IEEE Trans Biomed Eng; 2007 Aug; 54(8):1533-5. PubMed ID: 17694876 [TBL] [Abstract][Full Text] [Related]
14. Measurement of internal tissue optical properties at ultraviolet and visible wavelengths: Development and implementation of a fiberoptic-based system. Wang Q; Yang H; Agrawal A; Wang NS; Pfefer TJ Opt Express; 2008 Jun; 16(12):8685-703. PubMed ID: 18545582 [TBL] [Abstract][Full Text] [Related]
15. Effects of fiber-optic probe design and probe-to-target distance on diffuse reflectance measurements of turbid media: an experimental and computational study at 337 nm. Papaioannou T; Preyer NW; Fang Q; Brightwell A; Carnohan M; Cottone G; Ross R; Jones LR; Marcu L Appl Opt; 2004 May; 43(14):2846-60. PubMed ID: 15143808 [TBL] [Abstract][Full Text] [Related]
16. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth. Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712 [TBL] [Abstract][Full Text] [Related]
17. Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media. Amelink A; Bard MP; Burgers SA; Sterenborg HJ Appl Opt; 2003 Jul; 42(19):4095-101. PubMed ID: 12868852 [TBL] [Abstract][Full Text] [Related]
18. Application of multiple artificial neural networks for the determination of the optical properties of turbid media. Jäger M; Foschum F; Kienle A J Biomed Opt; 2013 May; 18(5):57005. PubMed ID: 23680997 [TBL] [Abstract][Full Text] [Related]
19. Radiative transport in the delta-P1 approximation for semi-infinite turbid media. Seo I; Hayakawa CK; Venugopalan V Med Phys; 2008 Feb; 35(2):681-93. PubMed ID: 18383690 [TBL] [Abstract][Full Text] [Related]
20. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model. Seo I; You JS; Hayakawa CK; Venugopalan V J Biomed Opt; 2007; 12(1):014030. PubMed ID: 17343505 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]