BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 16928769)

  • 1. ATP-dependent sugar transport complexity in human erythrocytes.
    Leitch JM; Carruthers A
    Am J Physiol Cell Physiol; 2007 Feb; 292(2):C974-86. PubMed ID: 16928769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes.
    Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A
    Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha- and beta-monosaccharide transport in human erythrocytes.
    Leitch JM; Carruthers A
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C151-61. PubMed ID: 18987250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent substrate occlusion by the human erythrocyte sugar transporter.
    Heard KS; Fidyk N; Carruthers A
    Biochemistry; 2000 Mar; 39(11):3005-14. PubMed ID: 10715121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.
    Sage JM; Cura AJ; Lloyd KP; Carruthers A
    Am J Physiol Cell Physiol; 2015 May; 308(10):C827-34. PubMed ID: 25715702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane-bound glyceraldehyde-3-phosphate dehydrogenase and multiphasic erythrocyte sugar transport.
    Heard KS; Diguette M; Heard AC; Carruthers A
    Exp Physiol; 1998 Mar; 83(2):195-202. PubMed ID: 9568479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.
    Ojelabi OA; Lloyd KP; Simon AH; De Zutter JK; Carruthers A
    J Biol Chem; 2016 Dec; 291(52):26762-26772. PubMed ID: 27836974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative nucleotide binding to the human erythrocyte sugar transporter.
    Cloherty EK; Levine KB; Graybill C; Carruthers A
    Biochemistry; 2002 Oct; 41(42):12639-51. PubMed ID: 12379106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The human erythrocyte sugar transporter presents two sugar import sites.
    Hamill S; Cloherty EK; Carruthers A
    Biochemistry; 1999 Dec; 38(51):16974-83. PubMed ID: 10606533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis of GLUT1 inhibition by cytoplasmic ATP.
    Blodgett DM; De Zutter JK; Levine KB; Karim P; Carruthers A
    J Gen Physiol; 2007 Aug; 130(2):157-68. PubMed ID: 17635959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quench-flow analysis reveals multiple phases of GluT1-mediated sugar transport.
    Blodgett DM; Carruthers A
    Biochemistry; 2005 Feb; 44(7):2650-60. PubMed ID: 15709778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.
    Pérez A; Ojeda P; Valenzuela X; Ortega M; Sánchez C; Ojeda L; Castro M; Cárcamo JG; Rauch MC; Concha II; Rivas CI; Vera JC; Reyes AM
    Am J Physiol Cell Physiol; 2009 Jul; 297(1):C86-93. PubMed ID: 19386788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of GLUT1 in the sugar-induced dielectric response of human erythrocytes.
    Livshits L; Caduff A; Talary MS; Lutz HU; Hayashi Y; Puzenko A; Shendrik A; Feldman Y
    J Phys Chem B; 2009 Feb; 113(7):2212-20. PubMed ID: 19166280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the equilibrium exchange of nucleosides and 3-O-methylglucose in human erythrocytes and of the effects of cytochalasin B, phloretin and dipyridamole on their transport.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1987 May; 899(2):295-301. PubMed ID: 3580369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.