BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16928774)

  • 21. Multiple targets of chemosensitive signaling in locus coeruleus neurons: role of K+ and Ca2+ channels.
    Filosa JA; Putnam RW
    Am J Physiol Cell Physiol; 2003 Jan; 284(1):C145-55. PubMed ID: 12388081
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diethyl pyrocarbonate (DEPC) inhibits CO2 chemosensitivity in Helix aspersa.
    Lu DC; Erlichman JS; Leiter JC
    Respir Physiol; 1998 Jan; 111(1):65-78. PubMed ID: 9496473
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Involvement of TRP channels in the CO₂ chemosensitivity of locus coeruleus neurons.
    Cui N; Zhang X; Tadepalli JS; Yu L; Gai H; Petit J; Pamulapati RT; Jin X; Jiang C
    J Neurophysiol; 2011 Jun; 105(6):2791-801. PubMed ID: 21430274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16).
    Trapp S; Tucker SJ; Gourine AV
    Exp Physiol; 2011 Apr; 96(4):451-9. PubMed ID: 21239463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophysiological properties of paraventricular magnocellular neurons in rat brain slices: modulation of IA by angiotensin II.
    Li Z; Ferguson AV
    Neuroscience; 1996 Mar; 71(1):133-45. PubMed ID: 8834397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Theoretical perspectives on central chemosensitivity: CO2/H+-sensitive neurons in the locus coeruleus.
    Quintero MC; Putnam RW; Cordovez JM
    PLoS Comput Biol; 2017 Dec; 13(12):e1005853. PubMed ID: 29267284
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons.
    Prole DL; Lima PA; Marrion NV
    J Gen Physiol; 2003 Dec; 122(6):775-93. PubMed ID: 14638935
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calcium-dependent and ATP-sensitive potassium channels and the 'permissive' function of cyclic GMP in hypercapnia-induced pial arteriolar relaxation.
    Wang Q; Bryan RM; Pelligrino DA
    Brain Res; 1998 May; 793(1-2):187-96. PubMed ID: 9630623
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A computer model of mammalian central CO2 chemoreception.
    Chernov M; Putnam RW; Leiter JC
    Adv Exp Med Biol; 2008; 605():301-5. PubMed ID: 18085289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current.
    Pineda J; Aghajanian GK
    Neuroscience; 1997 Apr; 77(3):723-43. PubMed ID: 9070748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CO2 central chemosensitivity: why are there so many sensing molecules?
    Jiang C; Rojas A; Wang R; Wang X
    Respir Physiol Neurobiol; 2005 Feb; 145(2-3):115-26. PubMed ID: 15705527
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH.
    Yang Z; Xu H; Cui N; Qu Z; Chanchevalap S; Shen W; Jiang C
    J Gen Physiol; 2000 Jul; 116(1):33-45. PubMed ID: 10871638
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization by immunocytochemistry of ionic channels in Helix aspersa suboesophageal brain ganglia neurons.
    Azanza MJ; Pérez-Castejón C; Pes N; Pérez-Bruzón RN; Aisa J; Junquera C; Maestú C; Lahoz M; Martínez-Ciriano C; Vera-Gil A; Del Moral A
    Histol Histopathol; 2008 Apr; 23(4):397-406. PubMed ID: 18228196
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single voltage-gated K+ channels and their functions in small dorsal root ganglion neurones of rat.
    Safronov BV; Bischoff U; Vogel W
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):393-408. PubMed ID: 8782104
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons.
    Kang J; Huguenard JR; Prince DA
    J Neurophysiol; 2000 Jan; 83(1):70-80. PubMed ID: 10634854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative aspects of central CO2 chemoreception.
    Erlichman JS; Leiter JC
    Respir Physiol; 1997 Nov; 110(2-3):177-85. PubMed ID: 9407610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats.
    Stunden CE; Filosa JA; Garcia AJ; Dean JB; Putnam RW
    Respir Physiol; 2001 Sep; 127(2-3):135-55. PubMed ID: 11504586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Helix aspersa neurons maintain vigorous electrical activity when co-cultured with intact H. aspersa ganglia.
    Tiwari SK; Woodruff ML
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992; 101(1):163-74. PubMed ID: 1350962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U; Vogt J; Schuh-Hofer S; Dreier JP; Dirnagl U
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ca2(+)-activated K+ current involvement in neuronal function revealed by in situ single-channel analysis in Helix neurones.
    Gola M; Ducreux C; Chagneux H
    J Physiol; 1990 Jan; 420():73-109. PubMed ID: 2109063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.