BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 16928870)

  • 1. Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum.
    Stefani MR; Moghaddam B
    J Neurosci; 2006 Aug; 26(34):8810-8. PubMed ID: 16928870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic fluctuations in dopamine efflux in the prefrontal cortex and nucleus accumbens during risk-based decision making.
    St Onge JR; Ahn S; Phillips AG; Floresco SB
    J Neurosci; 2012 Nov; 32(47):16880-91. PubMed ID: 23175840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release.
    Lecourtier L; Defrancesco A; Moghaddam B
    Eur J Neurosci; 2008 Apr; 27(7):1755-62. PubMed ID: 18380670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum: a microdialysis and behavioral investigation.
    Cousins MS; Trevitt J; Atherton A; Salamone JD
    Neuroscience; 1999; 91(3):925-34. PubMed ID: 10391471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex.
    Jackson ME; Moghaddam B
    J Neurosci; 2001 Jan; 21(2):676-81. PubMed ID: 11160446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociable roles for the nucleus accumbens core and shell in regulating set shifting.
    Floresco SB; Ghods-Sharifi S; Vexelman C; Magyar O
    J Neurosci; 2006 Mar; 26(9):2449-57. PubMed ID: 16510723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine.
    Gan JO; Walton ME; Phillips PE
    Nat Neurosci; 2010 Jan; 13(1):25-7. PubMed ID: 19904261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation.
    Saddoris MP; Cacciapaglia F; Wightman RM; Carelli RM
    J Neurosci; 2015 Aug; 35(33):11572-82. PubMed ID: 26290234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prefrontal Dopamine D
    Jenni NL; Larkin JD; Floresco SB
    J Neurosci; 2017 Jun; 37(26):6200-6213. PubMed ID: 28546312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of discrimination learning on the rat striatal dopaminergic activity: a microdialysis study.
    Iwano H; Yamamuro Y; Hori K; Yamauchi T; Nomura M
    Neuroreport; 1997 Mar; 8(5):1095-8. PubMed ID: 9175091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation of prefrontal cortex at physiologically relevant frequencies inhibits dopamine release in the nucleus accumbens.
    Jackson ME; Frost AS; Moghaddam B
    J Neurochem; 2001 Aug; 78(4):920-3. PubMed ID: 11520912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tonic or Phasic Stimulation of Dopaminergic Projections to Prefrontal Cortex Causes Mice to Maintain or Deviate from Previously Learned Behavioral Strategies.
    Ellwood IT; Patel T; Wadia V; Lee AT; Liptak AT; Bender KJ; Sohal VS
    J Neurosci; 2017 Aug; 37(35):8315-8329. PubMed ID: 28739583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ventral striatal dopamine modulation of different forms of behavioral flexibility.
    Haluk DM; Floresco SB
    Neuropsychopharmacology; 2009 Jul; 34(8):2041-52. PubMed ID: 19262467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of an early experience of reward through maternal contact or its denial on the dopaminergic system of the rat brain.
    Raftogianni A; Stamatakis A; Diamantopoulou A; Kollia AM; Stylianopoulou F
    Neuroscience; 2014 Jun; 269():11-20. PubMed ID: 24680882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 6-Hydroxydopamine-Induced Dopamine Reductions in the Nucleus Accumbens, but not the Medial Prefrontal Cortex, Impair Cincinnati Water Maze Egocentric and Morris Water Maze Allocentric Navigation in Male Sprague-Dawley Rats.
    Braun AA; Amos-Kroohs RM; Gutierrez A; Lundgren KH; Seroogy KB; Vorhees CV; Williams MT
    Neurotox Res; 2016 Aug; 30(2):199-212. PubMed ID: 27003940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential contributions of infralimbic prefrontal cortex and nucleus accumbens during reward-based learning and extinction.
    Francois J; Huxter J; Conway MW; Lowry JP; Tricklebank MD; Gilmour G
    J Neurosci; 2014 Jan; 34(2):596-607. PubMed ID: 24403158
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cocaine-sensitive and -insensitive dopamine uptake in prefrontal cortex, nucleus accumbens and striatum.
    Elsworth JD; Taylor JR; Berger P; Roth RH
    Neurochem Int; 1993 Jul; 23(1):61-9. PubMed ID: 8369733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissociable dopamine dynamics for learning and motivation.
    Mohebi A; Pettibone JR; Hamid AA; Wong JT; Vinson LT; Patriarchi T; Tian L; Kennedy RT; Berke JD
    Nature; 2019 Jun; 570(7759):65-70. PubMed ID: 31118513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual locomotor response to novelty predicts selective alterations in D1 and D2 receptors and mRNAs.
    Hooks MS; Juncos JL; Justice JB; Meiergerd SM; Povlock SL; Schenk JO; Kalivas PW
    J Neurosci; 1994 Oct; 14(10):6144-52. PubMed ID: 7931568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.