These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 16929304)

  • 1. Potentiation of cortical inhibition by visual deprivation.
    Maffei A; Nataraj K; Nelson SB; Turrigiano GG
    Nature; 2006 Sep; 443(7107):81-4. PubMed ID: 16929304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo.
    Allen CB; Celikel T; Feldman DE
    Nat Neurosci; 2003 Mar; 6(3):291-9. PubMed ID: 12577061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid eye movement sleep deprivation in post-critical period, adolescent rats alters the balance between inhibitory and excitatory mechanisms in visual cortex.
    Shaffery JP; Lopez J; Bissette G; Roffwarg HP
    Neurosci Lett; 2006 Jan; 393(2-3):131-5. PubMed ID: 16236445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation.
    Maffei A; Nelson SB; Turrigiano GG
    Nat Neurosci; 2004 Dec; 7(12):1353-9. PubMed ID: 15543139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-derived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons.
    Inagaki T; Begum T; Reza F; Horibe S; Inaba M; Yoshimura Y; Komatsu Y
    Neurosci Res; 2008 Jun; 61(2):192-200. PubMed ID: 18395922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons.
    Dantzker JL; Callaway EM
    Nat Neurosci; 2000 Jul; 3(7):701-7. PubMed ID: 10862703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two functional channels from primary visual cortex to dorsal visual cortical areas.
    Yabuta NH; Sawatari A; Callaway EM
    Science; 2001 Apr; 292(5515):297-300. PubMed ID: 11303106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocular deprivation induces homosynaptic long-term depression in visual cortex.
    Rittenhouse CD; Shouval HZ; Paradiso MA; Bear MF
    Nature; 1999 Jan; 397(6717):347-50. PubMed ID: 9950426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term (2 to 5 h) dark exposure lowers long-term potentiation (LTP) induction threshold in rat primary visual cortex.
    Kuo MC; Dringenberg HC
    Brain Res; 2009 Jun; 1276():58-66. PubMed ID: 19409376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of visually driven synaptic responses in layer 4 regular-spiking neurons of rat visual cortex in absence of competing inputs.
    Iurilli G; Benfenati F; Medini P
    Cereb Cortex; 2012 Sep; 22(9):2171-81. PubMed ID: 22047965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats.
    Iurilli G; Olcese U; Medini P
    PLoS One; 2013; 8(12):e82044. PubMed ID: 24349181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical periods for experience-dependent synaptic scaling in visual cortex.
    Desai NS; Cudmore RH; Nelson SB; Turrigiano GG
    Nat Neurosci; 2002 Aug; 5(8):783-9. PubMed ID: 12080341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotoninergic fine-tuning of the excitation-inhibition balance in rat visual cortical networks.
    Moreau AW; Amar M; Le Roux N; Morel N; Fossier P
    Cereb Cortex; 2010 Feb; 20(2):456-67. PubMed ID: 19520765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-dependent decline in supragranular long-term synaptic plasticity by increased inhibition during the critical period in the rat primary visual cortex.
    Jang HJ; Cho KH; Kim HS; Hahn SJ; Kim MS; Rhie DJ
    J Neurophysiol; 2009 Jan; 101(1):269-75. PubMed ID: 18971296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex.
    Cooke SF; Bear MF
    Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130284. PubMed ID: 24298166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo.
    Speechley WJ; Hogsden JL; Dringenberg HC
    Eur J Neurosci; 2007 Nov; 26(9):2576-84. PubMed ID: 17970743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical period mechanisms in developing visual cortex.
    Hensch TK
    Curr Top Dev Biol; 2005; 69():215-37. PubMed ID: 16243601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory experience modifies the short-term dynamics of neocortical synapses.
    Finnerty GT; Roberts LS; Connors BW
    Nature; 1999 Jul; 400(6742):367-71. PubMed ID: 10432115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.