BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 16929304)

  • 1. Potentiation of cortical inhibition by visual deprivation.
    Maffei A; Nataraj K; Nelson SB; Turrigiano GG
    Nature; 2006 Sep; 443(7107):81-4. PubMed ID: 16929304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term depression induced by sensory deprivation during cortical map plasticity in vivo.
    Allen CB; Celikel T; Feldman DE
    Nat Neurosci; 2003 Mar; 6(3):291-9. PubMed ID: 12577061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid eye movement sleep deprivation in post-critical period, adolescent rats alters the balance between inhibitory and excitatory mechanisms in visual cortex.
    Shaffery JP; Lopez J; Bissette G; Roffwarg HP
    Neurosci Lett; 2006 Jan; 393(2-3):131-5. PubMed ID: 16236445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation.
    Maffei A; Nelson SB; Turrigiano GG
    Nat Neurosci; 2004 Dec; 7(12):1353-9. PubMed ID: 15543139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain-derived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons.
    Inagaki T; Begum T; Reza F; Horibe S; Inaba M; Yoshimura Y; Komatsu Y
    Neurosci Res; 2008 Jun; 61(2):192-200. PubMed ID: 18395922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons.
    Dantzker JL; Callaway EM
    Nat Neurosci; 2000 Jul; 3(7):701-7. PubMed ID: 10862703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two functional channels from primary visual cortex to dorsal visual cortical areas.
    Yabuta NH; Sawatari A; Callaway EM
    Science; 2001 Apr; 292(5515):297-300. PubMed ID: 11303106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocular deprivation induces homosynaptic long-term depression in visual cortex.
    Rittenhouse CD; Shouval HZ; Paradiso MA; Bear MF
    Nature; 1999 Jan; 397(6717):347-50. PubMed ID: 9950426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-term (2 to 5 h) dark exposure lowers long-term potentiation (LTP) induction threshold in rat primary visual cortex.
    Kuo MC; Dringenberg HC
    Brain Res; 2009 Jun; 1276():58-66. PubMed ID: 19409376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of visually driven synaptic responses in layer 4 regular-spiking neurons of rat visual cortex in absence of competing inputs.
    Iurilli G; Benfenati F; Medini P
    Cereb Cortex; 2012 Sep; 22(9):2171-81. PubMed ID: 22047965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preserved excitatory-inhibitory balance of cortical synaptic inputs following deprived eye stimulation after a saturating period of monocular deprivation in rats.
    Iurilli G; Olcese U; Medini P
    PLoS One; 2013; 8(12):e82044. PubMed ID: 24349181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical periods for experience-dependent synaptic scaling in visual cortex.
    Desai NS; Cudmore RH; Nelson SB; Turrigiano GG
    Nat Neurosci; 2002 Aug; 5(8):783-9. PubMed ID: 12080341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotoninergic fine-tuning of the excitation-inhibition balance in rat visual cortical networks.
    Moreau AW; Amar M; Le Roux N; Morel N; Fossier P
    Cereb Cortex; 2010 Feb; 20(2):456-67. PubMed ID: 19520765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-dependent decline in supragranular long-term synaptic plasticity by increased inhibition during the critical period in the rat primary visual cortex.
    Jang HJ; Cho KH; Kim HS; Hahn SJ; Kim MS; Rhie DJ
    J Neurophysiol; 2009 Jan; 101(1):269-75. PubMed ID: 18971296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the mechanisms of long-term synaptic potentiation and depression serve experience-dependent plasticity in primary visual cortex.
    Cooke SF; Bear MF
    Philos Trans R Soc Lond B Biol Sci; 2014 Jan; 369(1633):20130284. PubMed ID: 24298166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous white noise exposure during and after auditory critical period differentially alters bidirectional thalamocortical plasticity in rat auditory cortex in vivo.
    Speechley WJ; Hogsden JL; Dringenberg HC
    Eur J Neurosci; 2007 Nov; 26(9):2576-84. PubMed ID: 17970743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical period mechanisms in developing visual cortex.
    Hensch TK
    Curr Top Dev Biol; 2005; 69():215-37. PubMed ID: 16243601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensory experience modifies the short-term dynamics of neocortical synapses.
    Finnerty GT; Roberts LS; Connors BW
    Nature; 1999 Jul; 400(6742):367-71. PubMed ID: 10432115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.