These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 16929404)

  • 21. Integrated micro bio systems and high performance liquid chromatographic system on chip.
    Takehiko K
    Se Pu; 2004 Jul; 22(4):335-7. PubMed ID: 15709403
    [No Abstract]   [Full Text] [Related]  

  • 22. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow.
    El-Ali J; Gaudet S; Günther A; Sorger PK; Jensen KF
    Anal Chem; 2005 Jun; 77(11):3629-36. PubMed ID: 15924398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative determination of glucose transfer between concurrent laminar water streams in a H-shaped microchannel.
    van Leeuwen M; Li X; Krommenhoek EE; Gardeniers H; Ottens M; van der Wielen LA; Heijnen JJ; van Gulik WM
    Biotechnol Prog; 2009; 25(6):1826-32. PubMed ID: 19731331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospray micromixer chip for on-line derivatization and kinetic studies.
    Abonnenc M; Dayon L; Perruche B; Lion N; Girault HH
    Anal Chem; 2008 May; 80(9):3372-8. PubMed ID: 18361520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Asymmetry of blood flow and cancer cell adhesion in a microchannel with symmetric bifurcation and confluence.
    Ishikawa T; Fujiwara H; Matsuki N; Yoshimoto T; Imai Y; Ueno H; Yamaguchi T
    Biomed Microdevices; 2011 Feb; 13(1):159-67. PubMed ID: 20960063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of microchannel geometry on preconcentration intensity in microfluidic chips with straight or convergent-divergent microchannels.
    Chen CL; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):751-7. PubMed ID: 22522531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure.
    Hou HH; Tsai CH; Fu LM; Yang RJ
    Electrophoresis; 2009 Jul; 30(14):2507-15. PubMed ID: 19639570
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Polydimethylsiloxane-LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels.
    Girardo S; Cecchini M; Beltram F; Cingolani R; Pisignano D
    Lab Chip; 2008 Sep; 8(9):1557-63. PubMed ID: 18818813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cultivation and recovery of vascular endothelial cells in microchannels of a separable micro-chemical chip.
    Yamashita T; Tanaka Y; Idota N; Sato K; Mawatari K; Kitamori T
    Biomaterials; 2011 Apr; 32(10):2459-65. PubMed ID: 21251708
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Micro/nanoscale well and channel fabrication on organic polymer substrates via a combination of photochemical and alkaline hydrolysis etchings.
    Yang P; Zhang X; Xie J; Chen J; Yang W
    Biomacromolecules; 2006 Oct; 7(10):2770-5. PubMed ID: 17025351
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrokinetic instability effects in microchannels with and without nanofilm coatings.
    Fu LM; Hong TF; Wen CY; Tsai CH; Lin CH
    Electrophoresis; 2008 Dec; 29(24):4871-9. PubMed ID: 19130549
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface-charge induced ion depletion and sample stacking near single nanopores in microfluidic devices.
    Zhou K; Kovarik ML; Jacobson SC
    J Am Chem Soc; 2008 Jul; 130(27):8614-6. PubMed ID: 18549214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Liquid-liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows.
    Castell OK; Allender CJ; Barrow DA
    Lab Chip; 2009 Feb; 9(3):388-96. PubMed ID: 19156287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of a microfluidic enzyme reactor utilizing magnetic beads.
    Liu X; Lo RC; Gomez FA
    Electrophoresis; 2009 Jun; 30(12):2129-33. PubMed ID: 19582716
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of aspect ratio on chemical reactions on microchip.
    Shimizu T; Masaki H; Korenaga T
    Environ Sci; 2006; 13(5):263-9. PubMed ID: 17096000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An investigation of the effects of inlet channel geometry on electrokinetic instabilities.
    Pan YJ; Yang RJ
    Biomed Microdevices; 2009 Feb; 11(1):9-16. PubMed ID: 18819007
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model.
    Park HM; Hong SM; Lee JS
    Biomed Microdevices; 2007 Oct; 9(5):751-60. PubMed ID: 17530411
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A microfluidic fuel cell with flow-through porous electrodes.
    Kjeang E; Michel R; Harrington DA; Djilali N; Sinton D
    J Am Chem Soc; 2008 Mar; 130(12):4000-6. PubMed ID: 18314983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.