These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 16929467)
41. Whole genome analysis of multiple rotavirus strains from a single stool specimen using sequence-independent amplification and 454® pyrosequencing reveals evidence of intergenotype genome segment recombination. Jere KC; Mlera L; Page NA; van Dijk AA; O'Neill HG Infect Genet Evol; 2011 Dec; 11(8):2072-82. PubMed ID: 22019521 [TBL] [Abstract][Full Text] [Related]
42. Random PCR and ultracentrifugation increases sensitivity and throughput of VIDISCA for screening of pathogens in clinical specimens. Tan le V; Van Doorn HR; Van der Hoek L; Minh Hien V; Jebbink MF; Quang Ha D; Farrar J; Van Vinh Chau N; de Jong MD J Infect Dev Ctries; 2011 Mar; 5(2):142-8. PubMed ID: 21389596 [TBL] [Abstract][Full Text] [Related]
44. Virus detection in high-throughput sequencing data without a reference genome of the host. Kruppa J; Jo WK; van der Vries E; Ludlow M; Osterhaus A; Baumgaertner W; Jung K Infect Genet Evol; 2018 Dec; 66():180-187. PubMed ID: 30292006 [TBL] [Abstract][Full Text] [Related]
45. Detection of animal viruses using nucleic acid sequence-based amplification (NASBA). Lau LT; Fung YW; Yu AC Dev Biol (Basel); 2006; 126():7-15; discussion 323. PubMed ID: 17058476 [TBL] [Abstract][Full Text] [Related]
46. Metagenomic identification of viral pathogens. Bibby K Trends Biotechnol; 2013 May; 31(5):275-9. PubMed ID: 23415279 [TBL] [Abstract][Full Text] [Related]
47. Preferential Amplification of Pathogenic Sequences. Ge F; Parker J; Chul Choi S; Layer M; Ross K; Jilly B; Chen J Sci Rep; 2015 Jun; 5():11047. PubMed ID: 26067233 [TBL] [Abstract][Full Text] [Related]
48. Sequencing of the large dsDNA genome of Oryctes rhinoceros nudivirus using multiple displacement amplification of nanogram amounts of virus DNA. Wang Y; Kleespies RG; Ramle MB; Jehle JA J Virol Methods; 2008 Sep; 152(1-2):106-8. PubMed ID: 18598718 [TBL] [Abstract][Full Text] [Related]
49. Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing. Breitbart M; Rohwer F Biotechniques; 2005 Nov; 39(5):729-36. PubMed ID: 16312220 [TBL] [Abstract][Full Text] [Related]
50. A touchdown nucleic acid amplification protocol as an alternative to culture backup for immunofluorescence in the routine diagnosis of acute viral respiratory tract infections. Coyle PV; Ong GM; O'Neill HJ; McCaughey C; De Ornellas D; Mitchell F; Mitchell SJ; Feeney SA; Wyatt DE; Forde M; Stockton J BMC Microbiol; 2004 Oct; 4():41. PubMed ID: 15504232 [TBL] [Abstract][Full Text] [Related]
51. Detection of TT virus by single-primer sequence-independent amplification in multiple samples collected from an outbreak of gastroenteritis. Braham S; Iturriza-Gómara M; Gray J Arch Virol; 2009; 154(6):981-5. PubMed ID: 19407928 [TBL] [Abstract][Full Text] [Related]
52. Nucleic acid testing for emerging viral infections. Allain JP; Thomas I; Sauleda S Transfus Med; 2002 Aug; 12(4):275-83. PubMed ID: 12220257 [TBL] [Abstract][Full Text] [Related]
53. Clinical evaluation of the isothermal amplification assays for the detection of four common respiratory viruses in children with pneumonia. Zhou H; Zhao M; Li X; Zhang D; Zhou S; Chen C; Feng Z; Ma X Arch Virol; 2017 May; 162(5):1311-1318. PubMed ID: 28155195 [TBL] [Abstract][Full Text] [Related]
54. Rapid genome sequencing of RNA viruses. Mizutani T; Endoh D; Okamoto M; Shirato K; Shimizu H; Arita M; Fukushi S; Saijo M; Sakai K; Lim CK; Ito M; Nerome R; Takasaki T; Ishii K; Suzuki T; Kurane I; Morikawa S; Nishimura H Emerg Infect Dis; 2007 Feb; 13(2):322-4. PubMed ID: 17479903 [TBL] [Abstract][Full Text] [Related]
55. Detection of Viruses in Clinical Samples by Use of Metagenomic Sequencing and Targeted Sequence Capture. Wylie KM; Wylie TN; Buller R; Herter B; Cannella MT; Storch GA J Clin Microbiol; 2018 Dec; 56(12):. PubMed ID: 30232133 [TBL] [Abstract][Full Text] [Related]
56. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics. Brinkmann A; Ergünay K; Radonić A; Kocak Tufan Z; Domingo C; Nitsche A PLoS Negl Trop Dis; 2017 Nov; 11(11):e0006075. PubMed ID: 29155823 [TBL] [Abstract][Full Text] [Related]
57. Synonymous Virus Genome Recoding as a Tool to Impact Viral Fitness. Martínez MA; Jordan-Paiz A; Franco S; Nevot M Trends Microbiol; 2016 Feb; 24(2):134-147. PubMed ID: 26646373 [TBL] [Abstract][Full Text] [Related]
58. Target-independent high-throughput sequencing methods provide evidence that already known human viral pathogens play a main role in respiratory infections with unexplained etiology. Pérez-Sautu U; Wiley MR; Iglesias-Caballero M; Pozo F; Prieto K; Chitty JA; García-García ML; Calvo C; Casas I; Palacios G Emerg Microbes Infect; 2019; 8(1):1054-1065. PubMed ID: 31335277 [TBL] [Abstract][Full Text] [Related]
59. Application of sequence-independent amplification (SIA) for the identification of RNA viruses in bioenergy crops. Agindotan BO; Ahonsi MO; Domier LL; Gray ME; Bradley CA J Virol Methods; 2010 Oct; 169(1):119-28. PubMed ID: 20638415 [TBL] [Abstract][Full Text] [Related]
60. Application of a targeted-enrichment methodology for full-genome sequencing of Dengue 1-4, Chikungunya and Zika viruses directly from patient samples. Kamaraj US; Tan JH; Xin Mei O; Pan L; Chawla T; Uehara A; Wang LF; Ooi EE; Gubler DJ; Tissera H; Ng LC; Wilder-Smith A; de Sessions PF; Barkham T; Anderson DE; Sessions OM PLoS Negl Trop Dis; 2019 Apr; 13(4):e0007184. PubMed ID: 31022183 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]