These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 16929531)

  • 41. Segmentation of the mouse hippocampal formation in magnetic resonance images.
    Richards K; Watson C; Buckley RF; Kurniawan ND; Yang Z; Keller MD; Beare R; Bartlett PF; Egan GF; Galloway GJ; Paxinos G; Petrou S; Reutens DC
    Neuroimage; 2011 Oct; 58(3):732-40. PubMed ID: 21704710
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Automated method for identification of patients with Alzheimer's disease based on three-dimensional MR images.
    Arimura H; Yoshiura T; Kumazawa S; Tanaka K; Koga H; Mihara F; Honda H; Sakai S; Toyofuku F; Higashida Y
    Acad Radiol; 2008 Mar; 15(3):274-84. PubMed ID: 18280925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CLASSIC: consistent longitudinal alignment and segmentation for serial image computing.
    Xue Z; Shen D; Davatzikos C
    Neuroimage; 2006 Apr; 30(2):388-99. PubMed ID: 16275137
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dense deformation field estimation for atlas-based segmentation of pathological MR brain images.
    Bach Cuadra M; De Craene M; Duay V; Macq B; Pollo C; Thiran JP
    Comput Methods Programs Biomed; 2006 Dec; 84(2-3):66-75. PubMed ID: 16979256
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Automatic segmentation of the caudate nucleus from human brain MR images.
    Xia Y; Bettinger K; Shen L; Reiss AL
    IEEE Trans Med Imaging; 2007 Apr; 26(4):509-17. PubMed ID: 17427738
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automatic segmentation of age-related macular degeneration in retinal fundus images.
    Köse C; Sevik U; Gençalioğlu O
    Comput Biol Med; 2008 May; 38(5):611-9. PubMed ID: 18402931
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development of subject-specific and statistical shape models of the knee using an efficient segmentation and mesh-morphing approach.
    Baldwin MA; Langenderfer JE; Rullkoetter PJ; Laz PJ
    Comput Methods Programs Biomed; 2010 Mar; 97(3):232-40. PubMed ID: 19695732
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid and automatic localization of the anterior and posterior commissure point landmarks in MR volumetric neuroimages.
    Bhanu Prakash KN; Hu Q; Aziz A; Nowinski WL
    Acad Radiol; 2006 Jan; 13(1):36-54. PubMed ID: 16399031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automated sulcal segmentation using watersheds on the cortical surface.
    Rettmann ME; Han X; Xu C; Prince JL
    Neuroimage; 2002 Feb; 15(2):329-44. PubMed ID: 11798269
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Segmentation of female pelvic organs in axial magnetic resonance images using coupled geometric deformable models.
    Ma Z; Jorge RM; Mascarenhas T; Tavares JM
    Comput Biol Med; 2013 May; 43(4):248-58. PubMed ID: 23375002
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Automated segmentation of pigmented skin lesions in multispectral imaging.
    Carrara M; Tomatis S; Bono A; Bartoli C; Moglia D; Lualdi M; Colombo A; Santinami M; Marchesini R
    Phys Med Biol; 2005 Nov; 50(22):N345-57. PubMed ID: 16264245
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Statistical parametric mapping of brain morphology: sensitivity is dramatically increased by using brain-extracted images as inputs.
    Fein G; Landman B; Tran H; Barakos J; Moon K; Di Sclafani V; Shumway R
    Neuroimage; 2006 May; 30(4):1187-95. PubMed ID: 16442817
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Implementation of talairach atlas based automated brain segmentation for radiation therapy dosimetry.
    Popple RA; Griffith HR; Sawrie SM; Fiveash JB; Brezovich IA
    Technol Cancer Res Treat; 2006 Feb; 5(1):15-21. PubMed ID: 16417398
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biomedical image skeletonization: a novel method applied to fibrin network structures.
    Chang S; Kulikowski CA; Dunn SM; Levy S
    Stud Health Technol Inform; 2001; 84(Pt 2):901-5. PubMed ID: 11604863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cortical surface segmentation and mapping.
    Tosun D; Rettmann ME; Han X; Tao X; Xu C; Resnick SM; Pham DL; Prince JL
    Neuroimage; 2004; 23 Suppl 1(0 1):S108-18. PubMed ID: 15501080
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative comparison of four brain extraction algorithms.
    Boesen K; Rehm K; Schaper K; Stoltzner S; Woods R; Lüders E; Rottenberg D
    Neuroimage; 2004 Jul; 22(3):1255-61. PubMed ID: 15219597
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Automated image segmentation by fractal grey tone functions.
    Rigaut JP
    Gegenbaurs Morphol Jahrb; 1989; 135(1):77-82. PubMed ID: 2737426
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deformable anatomic templates embed knowledge into patient's brain images: Part 1. Construction and display.
    Hayman LA; Kumar VA; Hamilton J; Prabhu SS; Thiebaut de Schotten M; Al-Zubidi N; Pagani J; Vabulas M; Groneman M; Kumar AJ
    J Comput Assist Tomogr; 2012; 36(3):354-9. PubMed ID: 22592623
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mindboggle: a scatterbrained approach to automate brain labeling.
    Klein A; Hirsch J
    Neuroimage; 2005 Jan; 24(2):261-80. PubMed ID: 15627570
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantification of biopolymer filament structure.
    Shah SA; Santago P; Rubin BK
    Ultramicroscopy; 2005 Oct; 104(3-4):244-54. PubMed ID: 15961231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.