These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 1692968)

  • 1. Detection of free radical-induced DNA damage with bromodeoxyuridine/Hoechst flow cytometry: implications for Bloom's syndrome.
    Poot M; Rüdiger HW; Hoehn H
    Mutat Res; 1990 May; 238(3):203-7. PubMed ID: 1692968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell kinetic evidence suggests elevated oxidative stress in cultured cells of Bloom's syndrome.
    Poot M; Hoehn H; Nicotera TM; Rüdiger HW
    Free Radic Res Commun; 1989; 7(3-6):179-87. PubMed ID: 2479595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 5-Bromodeoxyuridine-dependent increase in sister chromatid exchange formation in Bloom's syndrome is associated with reduction in topoisomerase II activity.
    Heartlein MW; Tsuji H; Latt SA
    Exp Cell Res; 1987 Mar; 169(1):245-54. PubMed ID: 3028845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA synthesis in Bloom's syndrome fibroblasts.
    Fujikawa-Yamamoto K; Odashima S; Kurihara T; Murakami F
    Cell Tissue Kinet; 1987 Jan; 20(1):69-76. PubMed ID: 3568092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed DNA maturation, a possible cause of the elevated sister-chromatid exchange in Bloom's syndrome.
    Ockey CH; Saffhill R
    Carcinogenesis; 1986 Jan; 7(1):53-7. PubMed ID: 3943145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA topoisomerases and the DNA lesion in human genetic instability syndromes.
    Poot M; Hoehn H
    Toxicol Lett; 1993 Apr; 67(1-3):297-308. PubMed ID: 8383888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential expression of p53, p21waf1/cip1 and hdm2 dependent on DNA damage in Bloom's syndrome fibroblasts.
    Collister M; Lane DP; Kuehl BL
    Carcinogenesis; 1998 Dec; 19(12):2115-20. PubMed ID: 9886565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunological alteration of the Bloom's syndrome uracil DNA glycosylase in Epstein-Barr virus-transformed human lymphoblastoid cells.
    Seal G; Henderson EE; Sirover MA
    Mutat Res; 1990 Mar; 243(3):241-8. PubMed ID: 2155388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free radical mediated cytotoxicity of desferrioxamine.
    Poot M; Rabinovitch PS; Hoehn H
    Free Radic Res Commun; 1989; 6(5):323-8. PubMed ID: 2477312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bromodeoxyuridine amplifies free-radical-mediated DNA damage.
    Poot M; Rabinovitch PS; Hoehn H
    Biochem J; 1989 Jul; 261(1):269-71. PubMed ID: 2775213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal uracil-DNA glycosylase activity in Bloom's syndrome cells.
    Vilpo JA; Vilpo LM
    Mutat Res; 1989 Jan; 210(1):59-62. PubMed ID: 2909871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relation between the human fibroblast strain 46BR and cell lines representative of Bloom's syndrome.
    Lehmann AR; Willis AE; Broughton BC; James MR; Steingrimsdottir H; Harcourt SA; Arlett CF; Lindahl T
    Cancer Res; 1988 Nov; 48(22):6343-7. PubMed ID: 3180052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA repair and the molecular mechanisms of Bloom's syndrome.
    Sirover MA; Vollberg TM; Seal G
    Crit Rev Oncog; 1990; 2(1):19-33. PubMed ID: 2091748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bloom's syndrome. XIII. DNA-polymerase activity of cultured lymphoblastoid cells.
    Spanos A; Holliday R; German J
    Hum Genet; 1986 Jun; 73(2):119-22. PubMed ID: 3013755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of purine and pyrimidine pools in Bloom's syndrome and normal cells.
    Taylor MW; Kothari RM; Holland GD; Martinez-Valdez H; Zeige G
    Cancer Biochem Biophys; 1983 Dec; 7(1):19-25. PubMed ID: 6667451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for abnormally regulated alternative RNA processing of mu chain gene in B-lymphoblastoid cells from Bloom's syndrome.
    Kondo N; Ozawa T; Kato Y; Inoue R; Kasahara K; Kameyama T; Orii T
    Exp Clin Immunogenet; 1992; 9(3):149-53. PubMed ID: 1338890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative replicon analysis of DNA synthesis in cancer-prone conditions and the defects in Bloom's syndrome.
    Ockey CH
    J Cell Sci; 1979 Dec; 40():125-44. PubMed ID: 536382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytogenetic demonstration of a corrective factor in Bloom's syndrome.
    Rüdiger HW
    IARC Sci Publ; 1982; (39):137-45. PubMed ID: 7152606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal regulation of uracil-DNA glycosylase induction during cell cycle and cell passage in Bloom's syndrome fibroblasts.
    Yamamoto Y; Fujiwara Y
    Carcinogenesis; 1986 Feb; 7(2):305-10. PubMed ID: 3948317
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concomitant reversion of the characteristic phenotypic properties of a cell line of Bloom's syndrome origin.
    Willis AE; Spurr NK; Lindahl T
    Carcinogenesis; 1989 Jan; 10(1):217-9. PubMed ID: 2910526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.