BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 16930037)

  • 1. Electrostatic effects on the reactions of cyclohexanone oxocarbenium ions.
    Baghdasarian G; Woerpel KA
    J Org Chem; 2006 Sep; 71(18):6851-8. PubMed ID: 16930037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleophilic substitution reactions of sulfur-substituted cyclohexanone acetals: an analysis of the factors controlling stereoselectivity.
    Billings SB; Woerpel KA
    J Org Chem; 2006 Jul; 71(14):5171-8. PubMed ID: 16808503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereochemistry of nucleophilic substitution reactions depending upon substituent: evidence for electrostatic stabilization of pseudoaxial conformers of oxocarbenium ions by heteroatom substituents.
    Ayala L; Lucero CG; Romero JA; Tabacco SA; Woerpel KA
    J Am Chem Soc; 2003 Dec; 125(50):15521-8. PubMed ID: 14664599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural evidence that alkoxy substituents adopt electronically preferred pseudoaxial orientations in six-membered ring dioxocarbenium ions.
    Chamberland S; Ziller JW; Woerpel KA
    J Am Chem Soc; 2005 Apr; 127(15):5322-3. PubMed ID: 15826161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using nucleophilic substitution reactions to understand how a remote alkyl or alkoxy substituent influences the conformation of eight-membered ring oxocarbenium ions.
    Chamberland S; Woerpel KA
    Org Lett; 2004 Dec; 6(25):4739-41. PubMed ID: 15575674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereoselective C-glycosylation reactions of ribose derivatives: electronic effects of five-membered ring oxocarbenium ions.
    Larsen CH; Ridgway BH; Shaw JT; Smith DM; Woerpel KA
    J Am Chem Soc; 2005 Aug; 127(31):10879-84. PubMed ID: 16076193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations into the role of ion pairing in reactions of heteroatom-substituted cyclic oxocarbenium ions.
    Shenoy SR; Woerpel KA
    Org Lett; 2005 Mar; 7(6):1157-60. PubMed ID: 15760163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleophilic additions of trimethylsilyl cyanide to cyclic oxocarbenium ions: evidence for the loss of stereoselectivity at the limits of diffusion control.
    Shenoy SR; Smith DM; Woerpel KA
    J Am Chem Soc; 2006 Jul; 128(26):8671-7. PubMed ID: 16802834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of acetal hydrolysis by remote alkoxy groups: evidence for electrostatic effects on the formation of oxocarbenium ions.
    Garcia A; Otte DA; Salamant WA; Sanzone JR; Woerpel KA
    Angew Chem Int Ed Engl; 2015 Mar; 54(10):3061-4. PubMed ID: 25614209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using stereoelectronic effects to explain selective reactions of 4-substituted five-membered ring oxocarbenium ions.
    Smith DM; Woerpel KA
    Org Lett; 2004 Jun; 6(12):2063-6. PubMed ID: 15176819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diastereoselective nucleophilic substitution reactions of oxasilacyclopentane acetals: application of the "inside attack" model for reactions of five-membered ring oxocarbenium ions.
    Bear TJ; Shaw JT; Woerpel KA
    J Org Chem; 2002 Apr; 67(7):2056-64. PubMed ID: 11925209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of alkoxy groups on rates of acetal hydrolysis and tosylate solvolysis: electrostatic stabilization of developing oxocarbenium ion intermediates and neighboring-group participation to form oxonium ions.
    Garcia A; Otte DA; Salamant WA; Sanzone JR; Woerpel KA
    J Org Chem; 2015 May; 80(9):4470-80. PubMed ID: 25806832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoselective C-glycosylation reactions of pyranoses: the conformational preference and reactions of the mannosyl cation.
    Lucero CG; Woerpel KA
    J Org Chem; 2006 Mar; 71(7):2641-7. PubMed ID: 16555815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stereochemistry of the oxidation of imines derived from substituted cyclohexanones: axial vs equatorial attack and evidence for delivery by an adjacent hydroxyl group.
    Wang Y; Chackalamannil S; Aubé J
    J Org Chem; 2000 Aug; 65(17):5120-6. PubMed ID: 10993335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of a chemical glycosylation reaction.
    Crich D
    Acc Chem Res; 2010 Aug; 43(8):1144-53. PubMed ID: 20496888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic and X-ray crystallographic evidence for electrostatic effects in 4-substituted cyclohexanone-derived hydrazones, imines, and corresponding salts.
    Dibble DJ; Ziller JW; Woerpel KA
    J Org Chem; 2011 Oct; 76(19):7706-19. PubMed ID: 21806053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diastereoselective Substitution Reactions of Acyclic β-Alkoxy Acetals via Electrostatically Stabilized Oxocarbenium Ion Intermediates.
    Ramdular A; Woerpel KA
    Org Lett; 2022 May; 24(17):3217-3222. PubMed ID: 35446592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Halogen Atom Participation in Guiding the Stereochemical Outcomes of Acetal Substitution Reactions.
    Demkiw KM; Remmerswaal WA; Hansen T; van der Marel GA; Codée JDC; Woerpel KA
    Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202209401. PubMed ID: 35980341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of conformational rigidity on the stereoselectivity of nucleophilic additions to five-membered ring bicyclic oxocarbenium ion intermediates.
    Lavinda O; Tran VT; Woerpel KA
    Org Biomol Chem; 2014 Sep; 12(36):7083-91. PubMed ID: 25087588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The "aqueous" Prins reaction.
    Aubele DL; Lee CA; Floreancig PE
    Org Lett; 2003 Nov; 5(23):4521-3. PubMed ID: 14602040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.